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MPC has a performance problem
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Result!

Plaintext MPC-based

AES Encryption < 100 ns1 ~1 ms / block [DG21]

1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor
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MPC has a performance problem
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Result!

Plaintext MPC-based

AES Encryption < 100 ns1 ~1 ms / block [DG21]

ML Inference (VGG16) 58 ms 100 seconds [WTB+21]

1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor
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MPC has a performance problem
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Result!

Plaintext MPC-based

AES Encryption < 100 ns1 ~1 ms / block [DG21]

ML Inference (VGG16) 58 ms 100 seconds [WTB+21]

ML Training (VGG16) 250 seconds Estimated 14 days [WTB+21]

1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor
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Privacy-preserving training with MPC
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MPC GPU
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Huge gap in expertise



Bridging the gap: Piranha
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Goal: make accelerating secure MPC

practical
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Bringing MPC to the GPU with Piranha

Piranha’s architecture

Key challenges: acceleration and memory

Evaluation

Overview



Creating a usable platform for MPC
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Piranha uses a modular approach to avoid redundancy and easily reuse 
MPC protocols in different settings.

Creating a usable platform for MPC
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Piranha adds a separation-of-concerns to MPC
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NN Library
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functionality
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Application 
Layer

Accelerating local 
computation

Composing 
computation and 
communication

High-level logic

In doing so, preserves the security properties of each protocol.



Piranha implements kernels for operations over local shares, which any 
protocol can use.

Acceleration is protocol-independent
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Applications see opaque vectorized data types defined by each protocol.

Applications change protocols with one #define
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Piranha’s architecture in practice

21

NN Library

Custom/ 
tailored MPC 
functionality

Fully-connected NN 
layer w/ ReLU

Secret-shared matrix 
multiplication + 

comparison

Matmul and 
comparison kernels

Protocol Layer

Device Layer

Application 
Layer



Bringing MPC to the GPU with Piranha

Piranha’s architecture

Key challenges: acceleration and memory

Evaluation

Overview



Problem 1: Performant linear operations for MPC
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(1) Integer-based GPU acceleration is missing
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LSS protocols operate over integer rings and use 
fixed point encoding for ML training to encode real 

values.

Big issue: no performant kernels are available for 

integer GEMM (general matrix multiplication)
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(1) Prior work adapts floating point kernels
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(1) Prior work adapts floating point kernels
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Assumes floating point 
performance outweighs overhead.
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Piranha provides integer kernels directly to MPC 
protocols

We implement 32/64-bit integer kernels with 

CUTLASS1.

(1) Piranha directly uses GPU integer cores
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Piranha provides integer kernels directly to MPC 
protocols

We implement 32/64-bit integer kernels with 

CUTLASS1.

10x cuBLAS f64: 47 ms  | Piranha int64: 4.9 ms

(1) Piranha directly uses GPU integer cores
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Problem 2: Memory-efficient comparisons
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● The issue: Secret-sharing induces data 
duplication that stresses on-GPU memory.

(2) MPC rapidly consumes GPU memory
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● Oblivious comparisons (e.g. ReLU) add 
memory stress because they compute over 

secret values bit-by-bit.

● Additional allocation will constrain our 
useful problem size.

(2) Comparisons are the prime culprit
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(2) Naïve string multiplication
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(2) The naïve protocol wastes memory
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● Piranha allows protocols to use iterator-based views for intricate data 
access patterns:

(2) Iterator-based views keep memory in one place
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● Piranha allows protocols to use iterator-based views for intricate data 
access patterns:

(2) Iterator-based views keep memory in one place
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● Piranha allows protocols to use iterator-based views for intricate data 
access patterns:

(2) Iterator-based views keep memory in one place
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Developing with Piranha
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Application Layer

Protocol Layer

Device Layer

Neural Network Library

Linear layers Pooling

Activations Normalization

Implemented Protocols

SecureML Falcon

FantasticFour



Microbenchmarks: is Piranha performant?
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Microbenchmarks: is Piranha performant?
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273x

~104 x

120x

Piranha boosts performance by several orders of magnitude across a 
range implemented MPC protocols.



Memory Efficiency
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Memory Efficiency
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2.3 GB

1.4 GB 581 MB

Iterator-based and correct typing allows Piranha to drastically 
reduce on-device memory consumption.



End-to-end training: is Piranha usable?
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Falcon estimated that the same 
training run would take it 14 days
on a CPU

Piranha accelerates a 3-party 
protocol to complete 10 epochs of 
VGG16 training in just 33 hours!



Piranha is a general-purpose platform for accelerating MPC on GPUs.

Use our code to build new protocols and implement new applications!

Summary
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github.com/ucbrise/piranha

Jean-Luc Watson | jlw@berkeley.edu


