Co-designing Cryptographic Systems
with Resource-Constrained Hardware

Jean-Luc Watson

Dissertation Talk
5/7/24 S ky

New cryptographic primitives are very powerful

New cryptographic primitives are very powerful

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21, AS16,...]

—%

NEZEAN

N
S

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

R)

New cryptographic primitives are very powerful

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21, AS16,...]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

R)

New cryptographic primitives are very powerful

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21, AS16,...]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

New cryptographic primitives are very powerful

Multi-party oh
. Joa' -
computation d ¢ \
[Ya086, GMW87] el
Hospital 1
Compute a shared result] = ———
from each of your private =Ann é_%
| L = Jd

inputs without revealing
them! ,_= = Hospital 3
77| E8
| L = J

Hospital 2

New cryptographic primitives are very powerful

Multi-party oh
. Joa' -
computation d = £5
[Ya086, GMW87] el
Hospital 1
Compute a shared result \ doer =
from each of your private $ =Ann é_%
| L = Jd
inputs without revealing @ /’
them! = Hospital 3
L D G -
777, E2
| L = Jd
Hospital 2

New cryptographic primitives are very powerful

Multi-party @h
. Joa' -
computation d = £5
[Yao86, GMW87] —
Hospital 1
Compute a shared result \] = ———
from each of your private $ = SIZ) Fo! o2
. . . <O e |:2:r:'|> SO
inputs without revealing D /’ 02 ‘\8/
. 1=
them! = = Hospital 3
og &=
777, E2
| L = Jd
Hospital 2

New cryptographic primitives are very powerful

Multi-party

computation
[Yao86, GMW87]

Compute a shared result

from each of your private
inputs without revealing

them!

$ & r =" l'/o ik
r =1 Z = L O 4
L= 4

New cryptographic primitives are very powerful

Zero-knowledge

Proofs

[FFS87]
777

Prove that you know
something without revealing
what it is!

r A
II%H
L J

a\

——=0)
v
0
O/{)/Z)/\O
L @ 4

10

New cryptographic primitives are very powerful

Zero-knowledge

Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

(o B

n%u

L J
AL

—=0)
v
0
O/{)/Z)/\O
L @ 4

11

New cryptographic primitives are very powerful

Zero-knowledge

Proofs
[FFS87]

Prove that you know

O 7 e@‘
something without revealing K < ;ng\;
11

what it is!

12

New cryptographic primitives are very powerful

Zero-knowledge

Proofs

[FFS87]

Prove that you know K?Q v %@
something without revealing < ’ B<8\;
what it is! m <’

13

New cryptographic primitives are very powerful

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21,AS16, ..

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

y

Multi-party

computation
[Yao86, GMW87]

Compute a shared result

from each of your private
inputs without revealing

them!

| "“S\ =0
[J

T R I_ﬂ L O L

L 4

) T4
i
I
/|
N2

Zero-knowledge

Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

s""~

\

re 01
/

OOOO
L O ol

14

However! With great power comes great overheads

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21, AS16,...]

System throughput with 10k

mailboxes: < 50 msgs/sec
[ECG+21]

Multi-party

computation
[Yao86, GMW87]

Zero-knowledge

Proofs
[FFS87]

15

However! With great power comes great overheads

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21, AS16,...]

System throughput with 10k

mailboxes: < 50 msgs/sec
[ECG+21]

Multi-party

computation
[Yao86, GMW87]

Estimated training time for
VGG16: 2 weeks [WTB+21]

Zero-knowledge

Proofs
[FFS87]

16

However! With great power comes great overheads

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21, AS16,...]

System throughput with 10k

mailboxes: < 50 msgs/sec
[ECG+21]

Multi-party

computation
[Yao86, GMW87]

Estimated training time for
VGG16: 2 weeks [WTB+21]

Zero-knowledge

Proofs
[FFS87]

Proving a correct ECDSA
signature: 45 sec*

*https://github.com/OxPARC/circom-ecdsa#benchmarks

17

However! With great power comes great overheads

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21, AS16,...]

Multi-party

computation
[Yao86, GMW87]

Zero-knowledge

Proofs
[FFS87]

Let’s take advantage of new heterogeneous hardware!

*https://github.com/OxPARC/circom-ecdsa#benchmarks

18

There’s more hardware out there!

Billions of mobile phone customers with a processor in their hand

Figure 1: Mobile subscriptions by technology (billion)

10 9.1
8.3 billion

billion

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf

19

There’s faster hardware out there!

Increasingly-powerful GPUs are commonplace

GPU Performance (FP32, single precision floating point)

GFLOPS (FP32)

35000

30000

25000

20000

15000

10000

5000

GTX 660 Ti

Tesla M60

Tesla K80
GTX

Tesla M40

Jitan i
---GTX'980 Ti-

Quadro RTX 8000

Titar] RTX
Quadro GP100
RTX 2080 Ti FE
Tesla P40 Quadrp\GV100
e GTSTNARY. -

TeslajP100

RT)@OQO

RT)@O&O

Ampe& AL00

RT)<(3070

RTX 2080 FE

RTX 2 80 TI
GTX 2080 Ti
so(mascal RTX 2080 Super

8@3} 70 Ti RTX 2060 Super
n Vega 5

GTX Tltan Black GTX 1660
: GT 90 GTX Titan lab’bgw_? 39“5
L : IESSR 6TX 295 K10 1€ 9 75; OXE RTX 2070 1
: I
: erho GTX 360 T' k20 GT¥y80 GT@QSO Tesla M6 recls py TESUA T4 RTXZ060
: 9800 GTX QK GTXBB0 GTX590 oribeo CLXHIS GTXH70 T GIXdogo T o GTX 1660 Ti
GTS 450 T 50 GEXX 38071 GT o GT oso 650
GTX|280 GTS[250 gq— GT¥760
8600 GTS gaob T i 20 GT®bs,
SBO>X 8500 GT G320 38 "y ok RTX 2070 FE
I % os® T 10 &9 TedPx1 Quadro-RTX 4000 1
H BA0CES G 100 GT 30 Ehp30 e igo-l;: Platinum 8180
: : 310 GTX460 GTX 650 Ti Tegiax
: : ; : : !ntel UHD Graphics 630 :
2006 2008 2010 2012 2014 2016 2018 2020

Year

https://blog.inten.to/hardware-for-deep-learning-part-3-gpu-8906c1644664

]
i
=)

N
8
TDP (watts)

80

40

20

Naturally, platforms have some fundamental constraints

e Mobile platforms (e.g. embedded sensors, mobile phones)

More compute devices BUT limited on-device power and processing speed

21

Naturally, platforms have some fundamental constraints

e Mobile platforms (e.g. embedded sensors, mobile phones)

More compute devices BUT limited on-device power and processing speed

e Hardware accelerators (e.g. GPUs)

More compute cores BUT limited on-device memory

22

Naturally, platforms have some fundamental constraints

e Mobile platforms (e.g. embedded sensors, mobile phones)

More compute devices BUT limited on-device power and processing speed

e Hardware accelerators (e.g. GPUs)

More compute cores BUT limited on-device memory

My work: how to build cryptographic systems with these tradeoffs

23

Thesis

Real-world applications can feasibly leverage advanced cryptographic
primitives without completely sacrificing performance by restructuring
the primitives to move protocol execution to resource-constrained
devices.

24

Thesis

Problems at a
useful scale

\/
Real-world applications can feasibly leverage advanced cryptographic

primitives without completely sacrificing performance by restructuring
the primitives to move protocol execution to resource-constrained
devices.

25

Thesis

A

No free lunch, but
an affordable one

Real-world applications can feasibly leverage advanced cryptographic

primitives without completely sacrificing performance by
restructuring the primitives to move protocol execution to resource-

constrained devices.

26

Thesis

Real-world applications can feasibly leverage advanced cryptographic
primitives without completely sacrificing performance by restructuring

the primitives to move protocol execution to resource-constrained
— N devices.

Systems-level modifications
around existing primitives

27

Thesis

Real-world applications can feasibly leverage advanced cryptographic
primitives without completely sacrificing performance by restructuring
the primitives to move protocol execution to resource-constrained

devices. L

Take advantage of
heterogeneous hardware

28

This talk

Metadata-hiding
communication

[CGB+15,KCG+17,ECG+21,AS16, ..]

]
]

E)D

a)
NEBULA

J=L]:

Mobile phones

Multi-party

computation
[Yao86, GMW87]

7 Ejb
(g
44l

Piranha

GPUs

Zero-knowledge

Proofs
[FFS87]

1Z20
Q)
L, o

ZK Proofs
at Scale

GPUs

29

This talk

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21,AS16,...]

1ef{mf

NEBULA

Mobile phones

30

An ideal backhaul system

Sensor

(=)

Monterey

Berkeley

Paris

Under a bridge in Minnesota
Fedex shipping depot

31

https://www.pngall.com/portal-png/download/33548

An ideal backhaul system

Sensor

0

data

Monterey
Berkeley

Paris

Internet

Under a bridge in Minnesota

Fedex shipping depot

32

https://www.pngall.com/portal-png/download/33548

An ideal backhaul system

Sensor

Internet
))) --- > | data

Monterey

Berkeley

Paris

Under a bridge in Minnesota
Fedex shipping depot

App Server H

Airborne salinity study
Trash can servicing
Traffic conditions
Wildlife counting
Package tracking

33

https://www.pngall.com/portal-png/download/33548

Data is carried by 'mules' in close proximity

Sensor

{a})

Mules

data

S
.
v S
LY
e
'
.6
1
Mgt
AR
AN
1 Nm
'
'
'

v

aPp
UJ

App Server

34

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

Mules send data to a backhaul provider

Sensor

{a})

Mules

l
1
1

v

ﬁ‘
UJ

\data
Platform
Provider

/

App Server

35

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

The provider forwards to paying servers

Sensor

{a})

Mules

l
1
1

v

ﬁ
U

Platform
Provider

data

App Server

36

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

Mules send data to a backhaul provider

1

Sensor

®

Backhaul systems are already being deployed

amazon sidewalk
N

pp Server H

37

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

Centralized backhaul threatens privacy

Platform
D
& —>(\j
J

1

|

1

|

|

1

1

" /

38

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

Centralized backhaul threatens privacy

‘5
A ~
A .
(T 3
s
v 8
'} .
')
‘
\‘ N
)

N

|

)

Mules

|

v

op—>

Platform
Provider

SensorID MulelID

square 1

hospital 2

Timestamp
1651762800

1651762803

39

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

Centralized backhaul threatens privacy

Mules

Platform

Provider

SensorID MuleID Timestamp
bl square 1 1651762800
o . . hospital 2
You can follow participants using this metadata!
[EuroSec'22] -

1651762803

40

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

Problem

Provider can run a valuable service if it is not concerned about privacy

Platform
Provider

Payment

Privacy)

System Abuse
Prevention

41

Problem

A provider can trivially support privacy by allowing any behavior

Platform
Provider

Payment x

Privacy

System Abuse
Prevention 3¢

Problem

A provider can trivially support privacy by allowing any behavior

Platform
Provider

Payment x

Privacy

System Abuse
Prevention 3¢

Challenge: have all three at the same time

43

Nebula's approach: decentralize protocol onto mules

- -
—————

Platform
Provider

— App Server

44

Nebula's approach: decentralize protocol onto mules

Sensor Mule _.-=-..

ol

| data flow

Platform
Provider

- -
—————

App Server

)

45

Nebula's approach: decentralize protocol onto mules

Sensor Mule _.-=-..

- -
—————

Platform
Provider

App Server

ol
| data flow T

Out-of-band accounting: app servers buy untraceable tokens from
provider and exchange them for data.

46

(1) Token Pre-purchase

e Atthebeginning of an epoch, app servers pre-purchase tokens from
the provider

Sensor Mule ‘/$$\ .
Platform
Provider App Server

47

(2) Payload Delivery

e Mules send data directly to application servers over anonymous

connections and receive tokens in exchange

Sensor Mule

Platform
Provider

payload

App Server

T

48

(3) Token Redemption

e At theendof an epoch, mules redeem tokens with the platform

provider in exchange for compensation

Sensor

Platform
Provider

App Server

49

Big problem: delivery misbehavior

not a payload

App Server

T |

T

Mule Spam

50

Big problem: delivery misbehavior

Mule

payload

W/App Server H

)

Missing Token

51

Big problem: delivery misbehavior

Mule

payload

\{/App Server

T

Bad/Duplicate Token

52

(4) Complaint

e After an epoch, if a mule notices misbehavior (e.g. invalid token), it

can complain to the provider for a new one

Sensor Mule

& W

complaint

Platform
Provider

App Server

53

Complaints are based on app server commitments

Before receiving data, app servers commit to token they will use if payload is uploaded

App server
commitment
Mule

Platform
Provider

54

Complaints are based on app server commitments

Before receiving data, app servers commit to token they will use if payload is uploaded

A new token is granted for proof of misbehavior

App server
commitment

Mule

Platform
Provider

55

Supporting upload in varied environments

We measured likely frequency of sensor-mule interaction

E -70

> 35 =

@ 0.100]campus 30 | [©0

3 L10 | 120

o cafe I

(] L 25 50

1

L -8

c L 20 40 -15

S 0.0101 OO officeld 6

8 park % 15 | 130 0

2 10 | t20 | [4

< 0.001 . . U U U
0.1 10.0 1000.0 Interaction Counts

Duration (sec)

Supporting upload in varied environments

We measured likely frequency of sensor-mule interaction, and duration of data transfer

© o =
o = o
= o o
o <) o

Interaction Frequency (Hz)

o
o
S}

o+

Jcampus
scafe
® officeld
park &< %
1 10.0 1000.0

Duration (sec)

35

30

-25

20

r15

r10

40 l
70

60
50
40
30

20

H14I
12
110
8
6

L4

" Interaction Counts

25

-20

-15

-10

256

128
64
32+
16 «nx-

Data Size (kB)

Plaintext (MTU:510)
DTLS (MTU:510)
Plaintext (MTU:200)
DTLS (MTU:200)
Plaintext (MTU:100)
DTLS (MTU:100)
BLE Connection

o H N B~

8 16
Time (seconds)

32

64

128

256

57

Supporting upload in varied environments

We measured likely frequency of sensor-mule interaction, and duration of data transfer

© o =
o = o
= o o
o <) o

Interaction Frequency (Hz)

o
o
S}

o+

| campus
scafe
O officeld
park be: %
1 10.0 1000.0

Duration (sec)

-25

20

r15

r10

1.

60
50
40
30

20

l14l
12
110
8
6

L4

" Interaction Counts

25

-20

-15

-10

256

128
64
32+
16 «nx-

Data Size (kB)

o H N B~

= == Plaintext (MTU:510)
= DTLS (MTU:510)
= = Plaintext (MTU:200)
== DTLS (MTU:200)
Plaintext (MTU:100)
DTLS (MTU:100)
BLE Connection

: R DTLS over BLE!
: ////
. /, /
Y R4
. /
2y,
7
-' T T T T T T
1 2 4 8 16 32 64 128 256

Time (seconds)

58

Supporting upload in varied environments

We measured likely frequency of sensor-mule interaction, and duration of data transfer

Duration (sec)

—_ 256 =
~ 1-000 40 ”14 — = Plaintext (MTU:510) e
E 70 128 —— DTLS (MTU:510)
> 35 15 -25 6al =~ Plaintext (MTU:200)
g - —— DTLS (MTU:200)
@ 0.1004campus 30 | 60 @ 3. Plaintext (MTU:100)
S f 10 | 20 - DTLS (MTU:100)
g caie o5 50 2 16 |=rrrr=grE-COonTeCon
| = '
[T -8 wn 8 : 7’
g o0 | 40 -15 s : R4 e
.2 0.0104 20 officeld L6 8 LSS
v park L15 | 30 | S
© +10 2 T 7,
L i
3 L10 | 20 4 14 2 4/
£ 0.001 T = S 2%
. T § - 0 . T T T T T T T
0.1 10.0 1000.0 Interaction Counts 0 1 > a 8 16 32 64 128

Time (seconds)

each with a transmission window of 5 to 10 seconds, supporting 2 to 16kB payloads

Example: in a park, we can expect a mule every few minutes,

256

59

Provider performance
High-throughput database to check token validity and detect duplicates.

_. 600,000
T
e
s 500,000 1
el
(0]
=
¥ 400,000
T
S
$ 300,000
0
& 200,000 -
% Receiving Tokens
:é 100,000 —+— \lerifying Signatures
0 —+— Verifying Signatures & Duplicates
1248 16 32 64 128

CPU cores

60

Provider performance
High-throughput database to check token validity and detect duplicates.

600,000 -

Tokens Per Second (Sustained)

o_

500,000 -

400,000 1

300,000 -

200,000 1

100,000 1

240M token/$
Receiving Tokens
—+— \erifying Signatures
—+— Verifying Signatures & Duplicates
1248 16 32 64 128

CPU cores

Fast enough for every person in the US to redeem tokens once a month

61

Summary

Backhaul networks

can feasibly leverage

Metadata-hiding

sacrificing performance by restructuring | Payment/abuse prevention

protocol execution to resource-constrained L_Phones

without completely

to move

62

This talk

Multi-party

computation
[Yao86, GMW87]

7 Ej%

{ vopa
‘Q‘AA

Piranha

GPUs

63

Secure multi-party computation (MPC) [va086, GMw87]

T

P1

TN

Result!

64

MPC has a performance problem

A/' F—\
A A

| I_%(}‘:> Result!

\A |:3

—\
Plaintext MPC-based
AES Encryption <100 ns? ~1 ms / block [DG21]
ML Inference (VGG16) 58 ms 100 seconds [WTB+21]
ML Training (VGG16) 250 seconds Estimated 14 days [WTB+21]

65

1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

Goal: make accelerating secure MPC practical

66

Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)

67

Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)

X + y = y4
X1 Y1 Z1
X2 Y2 Z2
X3 Y3 Z3

68

Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)

X1 + Y1 = Z1

X3| + [(y3| = |2Z3

69

Creating a usable platform for MPC

NN Library

i

Custom/
tailored MPC
functionality

Monolithic

70

Creating a usable platform for MPC

Piranha uses a modular approach to avoid redundancy and easily reuse MPC

protocols in different settings.

NN Library

i

Custom/
tailored MPC
functionality

Monolithic

Application
Layer

{

Protocol Layer

{

Device Layer

Modular

71

Piranha’s architecture in practice

NN Library

i

Custom/
tailored MPC
functionality

Application
Layer

{

Protocol Layer

—>

—>

{

Device Layer

—>

Fully-connected NN
layer w/ RelLU

Secret-shared matrix
multiplication +
comparison

Matmul and
comparison kernels

72

Problem 1: Performant linear operations for MPC

NN Library

i

Custom/
tailored MPC
functionality

Application
Layer

{

Protocol Layer

—>

—>

{

Device Layer

—

Fully-connected NN
layer w/ RelLU

Secret-shared matrix
multiplication +
comparison

Matmul and
comparison kernels

73

(1) Integer-based GPU acceleration is missing

Device
Layer

LSS protocols operate over integer rings and use
fixed point encoding for ML training to encode real
values.

Big issue: no performant kernels are available for
integer GEMM (general matrix multiplication)

74

(1) Prior work adapts floating point kernels

Prior work [TkT+21] splits 64-bit integers into 16-
bit float chunks, incurring compute overhead.

Assumes floating point
/ / \\ performance outweighs overhead.

Device /
Layer

GEMM x 10

75

(1) Piranha directly uses GPU integer cores

Piranha provides integer kernels directly to MPC
protocols

We implement 32/64-bit integer kernels with
CUTLASSL.

Device
Layer

1https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass

(1) Piranha directly uses GPU integer cores

Device
Layer

Piranha provides integer kernels directly to MPC
protocols

We implement 32/64-bit integer kernels with
CUTLASSL.

10x cuBLAS f64: 47 ms | Piranha int64: 4.9 ms

1https://github.com/NVIDIA/cutlass

77

https://github.com/NVIDIA/cutlass

(1) Piranha directly uses GPU integer cores

Lesson: make sure you're using the right tools for the job

P — -
\

78

Problem 2: Memory-efficient comparisons

NN Library

é

Custom/
tailored MPC
functionality

Application
Layer

)

Protocol Layer

—>

—

{

Device Layer

—>

Fully-connected NN
layer w/ RelLU

Secret-shared matrix
multiplication +
comparison

Matmul and
comparison kernels

79

(2) MPC rapidly consumes GPU memory

Protocol
Layer

e Theissue: Secret-sharing induces data
duplication that stresses on-GPU memory.

80

(2) Comparisons are the prime culprit

Protocol
Layer

e Oblivious comparisons (e.g. ReLU) add
memory stress because they compute over
secret values bit-by-bit.

e Additional allocation will constrain our
useful problem size.

/

81

(2) Naive string multiplication

b.=]]5

82

(2) Naive string multiplication

b =

b’,

b’

1

83

(2) The naive protocol wastes memory

b =

b’,

b’

30

b’,

b’

84

(2) Iterator-based views keep memory in one place

e Piranha allows protocols to use iterator-based views for intricate data
access patterns:

by
b, by b, b’,
> % = » | b’y | x | b7, =
b, b, b, b’
b,

b.=]]5

85

(2) Iterator-based views keep memory in one place

e Piranha allows protocols to use iterator-based views for intricate data
access patterns:

by |« b’,
D

*

<D
b3

b’y | * | b’y

1
v

86

(2) Iterator-based views keep memory in one place

e Piranha allows protocols to use iterator-based views for intricate data
access patterns:

by |« b’, b,
D

*

Il
*
Il

87

Run-time (sec, log scale)

Microbenchmarks: is Piranha performant?

104 ~ @ 104 - D 100 -
—@— P - SecureML S P —Falcon S - P — FantasticFour
MP-SPDZ semi2k - v MP-SPDZ replicated-ring n MP-SPDZ rep4-ring
102 A g 107 A 2 10?1
~104 g g
10° - 104x 8 10° A G 100 A
‘ v 2 273x v 120x v
v
10_2 | z 10_2 | g 10_2 | .——.—/
c c
T T T T T T rrrJ T T é L T T T T rrTg T T é T T T T T rrry T T
10 30 50 100 300 10 30 50 100 300 10 30 50 100 300
Matrix dimensions (log scale) Matrix dimensions (log scale) Matrix dimensions (log scale)

Piranha boosts performance by several orders of magnitude across a
range implemented MPC protocols.

88

Memory Efficiency

2500
—_ = Naive Implementation
o pe--- e 2.3GB
= 2000 max memory load
®
4 1500
>
g 1000
(0]
= 500
-]
o
O o

0% 25% 50% 75% 100%

Computation Progress

89

Memory Efficiency

2500 : . 2500 — 2500 T

= L _—_Nﬂvg Impﬁer&erﬁaﬂog ______ - Iterator-based Optimization = = Type-based Optimization
m

\% 2000 2 3 GB S 2000 g 2000
Q : - ®
7] Q 17}
D 1500 B0 o e e e e e e m— = = > 1500
3 S 14GB &
£ 1000 g 1000 . g 1000 581 MB
2 5] S Sy iy

500 = 500 500
- S -
o a o
O o G o 0

0% 25% 50% 75% 100% o 0% 25% 50% 75% 100%» 0% 25% 50% 75% 100%
Computation Progress Computation Progress Computation Progress

lterator-based and correct typing allows Piranha to drastically
reduce on-device memory consumption.

90

End-to-end training: is Piranha usable?

Falcon estimated that the same

Ni 1 Network Time Comm. Accuracy

training run would take it 14 days Nyiork Protocol iy @y
CPU rain (%) est (%)
ona SecureML P-SecureML 12.99 49.55 97.37 96.56
. P-FantasticFour 23.39 33.01 97.37 96.56
Piranha accelerates a 3-party e PSewmML §755 6818 9678 9680
P-Falcon 71.56 485.90 96.88 97.10
prOtOCO| to Complete 10 epOChS Of (MNIST) P-FantasticFour 219.20 676.13 96.88 97.11
VGG16 training in just 33 hours! AlexNeg P-SecureML 156.01 740.50 40.74 40.47
(CIFAR10) P-Falcon 110.66 382.18 4059 40.71

VGG16 T =OCCUICIVILS S JOZLZ OF oV Fo L o 5 G TI Uz T+00

——= (CIFARTU) Seas = Ansacadl s—s—aa A=
P-FantasticFour 7697.54 29106.24 55.02 54.35

91

Summary

Private ML training MPC

can feasibly leverage without completely
sacrificing performance by restructuring [_localshareoperations | {4 move
protocol execution to resource-constrained _SPYs

This talk

Zero-knowledge

Proofs
[FFS87]

©

ZK jroofs

at Scale

GPUs

93

Scaling zero-knowledge proofs

E%?—)n Vs. ?—)]T

e Piranhadesigned a platform for on-device training and optimized memory
usage within the confines of a single GPU

94

Scaling zero-knowledge proofs

E%?—)n Vs. ?—)]T

e Piranhadesigned a platform for on-device training and optimized memory usage
within the confines of a single GPU
e Zero-knowledge proofs are even more memory-intensive (many GBs per proof)

What happens when we run out of GPU memory entirely?

95

Focus on a critical bottleneck (~80%):
multi-scalar multiplication

i=1 /‘ \

lipti rve poin
scalar € ptic curve point

e MSM size scales as a function of the circuit parameters
o (e.g.220for asingle signature verification)

96

Simple idea: leverage unified memory to increase scale

'Normal'

CPU Memory

explicit copies

memcpy

GPU Memory

97

Simple idea: leverage unified memory to increase scale

'Normal'

CPU Memory

explicit copies

memcpy

Unified Memory

paging into host memory

GPU Memory

CPU Memory GPU Memory

—

: page

fault

A=)

98

Now we see a small but persistent paging overhead

A Baseline (s) Unified Mem (s)

3
0
Q 2
£
|_
c
0
5 1
o
O}
x
(N1

o

0 20000000 40000000 60000000

MSM Size

99

Now we see a small but persistent paging overhead

A Baseline (s) Unified Mem (s)

3
0
Q 2
£
|_
c
0
5 1
o
O}
x
L

o

0 20000000 40000000 60000000

Can we do better? 100

How does an MSM work?

Points

Scalars

Buckets

101

How does an MSM work?

Points

Scalars

aggregate points into
buckets based on

corresponding scalar

>

Buckets

102

How does an MSM work?

Points

Scalars

add points into
buckets based on
corresponding scalar
>

Buckets

multiply the buckets
for your result!

>

O

103

How does an MSM work?

Points

Scalars

add points into
buckets based on
corresponding scalar
>

Buckets

multiply the buckets
for your result!

>

O

104

|dea: spill GPU memory to both CPU and disk

SSD

CPU main memory

SSD

105

|dea: spill GPU memory to both CPU and disk

SSD

CPU main memory SSD

Hypothesis: slow computation time of chunked MSM segments can hide memory
access latency for next chunk, allowing effectively unbounded-size problems

106

Bucket aggregation is slow and allows memory movement

-l

107

Chunking is better for performance!

A Baseline (s) Unified Mem (s) A Chunking (s)

3
0
O 2
£
=
c
e
S 1
o
Q
>
L
0
0 20000000 40000000 60000000

MSM Size 108

Summary

Complex attestation

sacrificing performance by restructuring
protocol execution to resource-constrained

can feasibly leverage

ZKPs

multi-scalar multiplication

GPUs

without completely

to move

109

Co-designing Cryptographic Systems
with Resource-Constrained Hardware

Jean-Luc Watson

Dissertation Talk
5/7/24 S ky

