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New cryptographic primitives are very powerful
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New cryptographic primitives are very powerful
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However! With great power comes great overheads
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However! With great power comes great overheads

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21, AS16,...]

System throughput with 10k

mailboxes: < 50 msgs/sec
[ECG+21]

Multi-party

computation
[Yao86, GMW87]

Estimated training time for
VGG16: 2 weeks [WTB+21]

Zero-knowledge

Proofs
[FFS87]

Proving a correct ECDSA
signature: 45 sec*

*https://github.com/OxPARC/circom-ecdsa#benchmarks

17



However! With great power comes great overheads

Metadata-hiding

communication
[CGB+15,KCG+17,ECG+21, AS16,...]

Multi-party

computation
[Yao86, GMW87]

Zero-knowledge

Proofs
[FFS87]

Let’s take advantage of new heterogeneous hardware!

*https://github.com/OxPARC/circom-ecdsa#benchmarks
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There’s more hardware out there!

Billions of mobile phone customers with a processor in their hand

Figure 1: Mobile subscriptions by technology (billion)
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8.3 billion

billion

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf
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There’s faster hardware out there!

Increasingly-powerful GPUs are commonplace

GPU Performance (FP32, single precision floating point)
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Naturally, platforms have some fundamental constraints

e Mobile platforms (e.g. embedded sensors, mobile phones)

More compute devices BUT limited on-device power and processing speed
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Naturally, platforms have some fundamental constraints

e Mobile platforms (e.g. embedded sensors, mobile phones)

More compute devices BUT limited on-device power and processing speed

e Hardware accelerators (e.g. GPUs)

More compute cores BUT limited on-device memory

My work: how to build cryptographic systems with these tradeoffs
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Thesis

Real-world applications can feasibly leverage advanced cryptographic
primitives without completely sacrificing performance by restructuring
the primitives to move protocol execution to resource-constrained
devices.
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Thesis

Problems at a
useful scale

\/
Real-world applications can feasibly leverage advanced cryptographic

primitives without completely sacrificing performance by restructuring
the primitives to move protocol execution to resource-constrained
devices.
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Thesis

A

No free lunch, but
an affordable one

Real-world applications can feasibly leverage advanced cryptographic

primitives without completely sacrificing performance by
restructuring the primitives to move protocol execution to resource-

constrained devices.
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Thesis

Real-world applications can feasibly leverage advanced cryptographic
primitives without completely sacrificing performance by restructuring

the primitives to move protocol execution to resource-constrained
— N devices.

Systems-level modifications
around existing primitives
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Thesis

Real-world applications can feasibly leverage advanced cryptographic
primitives without completely sacrificing performance by restructuring
the primitives to move protocol execution to resource-constrained

devices. L

Take advantage of
heterogeneous hardware
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An ideal backhaul system

Sensor
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Under a bridge in Minnesota
Fedex shipping depot
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https://www.pngall.com/portal-png/download/33548
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An ideal backhaul system
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Data is carried by 'mules' in close proximity
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https://thenounproject.com/browse/collection-icon/smart-home-191607

Mules send data to a backhaul provider
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The provider forwards to paying servers
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https://thenounproject.com/browse/collection-icon/smart-home-191607

Mules send data to a backhaul provider
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https://thenounproject.com/browse/collection-icon/smart-home-191607

Centralized backhaul threatens privacy
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https://thenounproject.com/browse/collection-icon/smart-home-191607

Centralized backhaul threatens privacy
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Centralized backhaul threatens privacy

Mules

Platform

Provider

SensorID MuleID Timestamp
bl square 1 1651762800
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You can follow participants using this metadata!
[EuroSec'22] -

1651762803
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Problem

Provider can run a valuable service if it is not concerned about privacy
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Problem

A provider can trivially support privacy by allowing any behavior

Platform
Provider

Payment x

Privacy

System Abuse
Prevention 3¢

Challenge: have all three at the same time
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Nebula's approach: decentralize protocol onto mules
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Nebula's approach: decentralize protocol onto mules
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Nebula's approach: decentralize protocol onto mules
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Out-of-band accounting: app servers buy untraceable tokens from
provider and exchange them for data.
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(1) Token Pre-purchase

e Atthebeginning of an epoch, app servers pre-purchase tokens from
the provider

Sensor Mule ‘/$$\ .
Platform
Provider App Server
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(2) Payload Delivery

e Mules send data directly to application servers over anonymous

connections and receive tokens in exchange

Sensor Mule

Platform
Provider

payload

App Server

T
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(3) Token Redemption

e At theendof an epoch, mules redeem tokens with the platform

provider in exchange for compensation

Sensor

Platform
Provider

App Server
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Big problem: delivery misbehavior

not a payload

App Server
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Big problem: delivery misbehavior
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Big problem: delivery misbehavior

Mule

payload

\{/App Server

T

Bad/Duplicate Token
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(4) Complaint

e After an epoch, if a mule notices misbehavior (e.g. invalid token), it

can complain to the provider for a new one

Sensor Mule

& W

complaint

Platform
Provider

App Server
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Complaints are based on app server commitments

Before receiving data, app servers commit to token they will use if payload is uploaded

App server
commitment
Mule

Platform
Provider
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Complaints are based on app server commitments

Before receiving data, app servers commit to token they will use if payload is uploaded

A new token is granted for proof of misbehavior

App server
commitment

Mule

Platform
Provider
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Supporting upload in varied environments

We measured likely frequency of sensor-mule interaction
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Supporting upload in varied environments

We measured likely frequency of sensor-mule interaction, and duration of data transfer
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Supporting upload in varied environments

We measured likely frequency of sensor-mule interaction, and duration of data transfer
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Supporting upload in varied environments

We measured likely frequency of sensor-mule interaction, and duration of data transfer
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Provider performance
High-throughput database to check token validity and detect duplicates.
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Provider performance
High-throughput database to check token validity and detect duplicates.
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Fast enough for every person in the US to redeem tokens once a month
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Summary

Backhaul networks

can feasibly leverage

Metadata-hiding

sacrificing performance by restructuring | Payment/abuse prevention

protocol execution to resource-constrained L_Phones

without completely

to move
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Secure multi-party computation (MPC) [va086, GMw87]

T

P1
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Result!
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MPC has a performance problem

A/' F—\
A A

| I_%(}‘:> Result!

\A |:3

—\
Plaintext MPC-based
AES Encryption <100 ns? ~1 ms / block [DG21]
ML Inference (VGG16) 58 ms 100 seconds [WTB+21]
ML Training (VGG16) 250 seconds Estimated 14 days [WTB+21]
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1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor



https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

Goal: make accelerating secure MPC practical
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Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)
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Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)

X + y = y4
X1 Y1 Z1
X2 Y2 Z2
X3 Y3 Z3
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Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)

X1 + Y1 = Z1

X3| + [(y3| = |2Z3
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Creating a usable platform for MPC

NN Library

i

Custom/
tailored MPC
functionality

Monolithic
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Creating a usable platform for MPC

Piranha uses a modular approach to avoid redundancy and easily reuse MPC

protocols in different settings.

NN Library

i

Custom/
tailored MPC
functionality

Monolithic

Application
Layer

{

Protocol Layer

{

Device Layer

Modular
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Piranha’s architecture in practice

NN Library
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Protocol Layer

—>

—>
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Device Layer

—>

Fully-connected NN
layer w/ RelLU

Secret-shared matrix
multiplication +
comparison

Matmul and
comparison kernels

72



Problem 1: Performant linear operations for MPC

NN Library

i

Custom/
tailored MPC
functionality

Application
Layer

{

Protocol Layer

—>
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{

Device Layer

—

Fully-connected NN
layer w/ RelLU

Secret-shared matrix
multiplication +
comparison

Matmul and
comparison kernels
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(1) Integer-based GPU acceleration is missing

Device
Layer

LSS protocols operate over integer rings and use
fixed point encoding for ML training to encode real
values.

Big issue: no performant kernels are available for
integer GEMM (general matrix multiplication)
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(1) Prior work adapts floating point kernels

Prior work [TkT+21] splits 64-bit integers into 16-
bit float chunks, incurring compute overhead.

Assumes floating point
/ / \\ performance outweighs overhead.

Device /
Layer

GEMM x 10
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(1) Piranha directly uses GPU integer cores

Piranha provides integer kernels directly to MPC
protocols

We implement 32/64-bit integer kernels with
CUTLASSL.

Device
Layer

1https://github.com/NVIDIA/cutlass



https://github.com/NVIDIA/cutlass

(1) Piranha directly uses GPU integer cores

Device
Layer

Piranha provides integer kernels directly to MPC
protocols

We implement 32/64-bit integer kernels with
CUTLASSL.

10x cuBLAS f64: 47 ms | Piranha int64: 4.9 ms

1https://github.com/NVIDIA/cutlass
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https://github.com/NVIDIA/cutlass

(1) Piranha directly uses GPU integer cores

Lesson: make sure you're using the right tools for the job

P — -
\
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Problem 2: Memory-efficient comparisons

NN Library
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Custom/
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(2) MPC rapidly consumes GPU memory

Protocol
Layer

e Theissue: Secret-sharing induces data
duplication that stresses on-GPU memory.
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(2) Comparisons are the prime culprit

Protocol
Layer

e Oblivious comparisons (e.g. ReLU) add
memory stress because they compute over
secret values bit-by-bit.

e Additional allocation will constrain our
useful problem size.

/
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(2) Naive string multiplication

b.=]]5
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(2) Naive string multiplication

b =

b’,

b’

1
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(2) The naive protocol wastes memory

b =

b’,

b’

30

b’,

b’
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(2) Iterator-based views keep memory in one place

e Piranha allows protocols to use iterator-based views for intricate data
access patterns:

by
b, by b, b’,
> % = » | b’y | x | b7, =
b, b, b, b’
b,

b.=]]5
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(2) Iterator-based views keep memory in one place

e Piranha allows protocols to use iterator-based views for intricate data
access patterns:

by |« b’,
D

*

<D
b3

b’y | * | b’y

1
v
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(2) Iterator-based views keep memory in one place

e Piranha allows protocols to use iterator-based views for intricate data
access patterns:

by |« b’, b,
D

*

Il
*
Il
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Run-time (sec, log scale)

Microbenchmarks: is Piranha performant?
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Piranha boosts performance by several orders of magnitude across a
range implemented MPC protocols.
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Memory Efficiency
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Memory Efficiency
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lterator-based and correct typing allows Piranha to drastically
reduce on-device memory consumption.
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End-to-end training: is Piranha usable?

Falcon estimated that the same

Ni 1 Network Time  Comm. Accuracy

training run would take it 14 days Nyiork Protocol iy @y
CPU rain (%) est (%)
ona SecureML P-SecureML 12.99 49.55 97.37 96.56
. P-FantasticFour 23.39 33.01 97.37 96.56
Piranha accelerates a 3-party e PSewmML  §755 6818 9678 9680
P-Falcon 71.56 485.90 96.88 97.10
prOtOCO| to Complete 10 epOChS Of (MNIST) P-FantasticFour 219.20 676.13 96.88 97.11
VGG16 training in just 33 hours! AlexNeg  P-SecureML 156.01  740.50 40.74  40.47
(CIFAR10) P-Falcon 110.66  382.18 4059  40.71

VGG16 T =OCCUICIVILS S JOZLZ OF oV Fo L o 5 G TI Uz T+00

——= (CIFARTU) Seas = Ansacadl s—s—aa A=
P-FantasticFour 7697.54 29106.24 55.02 54.35
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Summary

Private ML training MPC

can feasibly leverage without completely
sacrificing performance by restructuring [_localshareoperations | {4 move
protocol execution to resource-constrained _SPYs




This talk

Zero-knowledge

Proofs
[FFS87]

©

ZK jroofs

at Scale

GPUs
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Scaling zero-knowledge proofs

E%?—)n Vs. ?—)]T

e Piranhadesigned a platform for on-device training and optimized memory
usage within the confines of a single GPU
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Scaling zero-knowledge proofs

E%?—)n Vs. ?—)]T

e Piranhadesigned a platform for on-device training and optimized memory usage
within the confines of a single GPU
e Zero-knowledge proofs are even more memory-intensive (many GBs per proof)

What happens when we run out of GPU memory entirely?
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Focus on a critical bottleneck (~80%):
multi-scalar multiplication

i=1 /‘ \

lipti rve poin
scalar € ptic curve point

e MSM size scales as a function of the circuit parameters
o (e.g.220for asingle signature verification)
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Simple idea: leverage unified memory to increase scale

'Normal'

CPU Memory

explicit copies

memcpy

GPU Memory
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Simple idea: leverage unified memory to increase scale

'Normal'

CPU Memory

explicit copies

memcpy

Unified Memory

paging into host memory

GPU Memory

CPU Memory GPU Memory

—

: page

fault

A=)
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Now we see a small but persistent paging overhead

A Baseline (s) Unified Mem (s)
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MSM Size
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Now we see a small but persistent paging overhead

A Baseline (s) Unified Mem (s)
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Can we do better? 100




How does an MSM work?

Points

Scalars

Buckets
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How does an MSM work?

Points

Scalars

aggregate points into
buckets based on

corresponding scalar

>

Buckets
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How does an MSM work?

Points

Scalars

add points into
buckets based on
corresponding scalar
>

Buckets

multiply the buckets
for your result!

>

O

103



How does an MSM work?

Points

Scalars

add points into
buckets based on
corresponding scalar
>

Buckets

multiply the buckets
for your result!

>

O
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|dea: spill GPU memory to both CPU and disk

SSD

CPU main memory

SSD
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|dea: spill GPU memory to both CPU and disk

SSD

CPU main memory SSD

Hypothesis: slow computation time of chunked MSM segments can hide memory
access latency for next chunk, allowing effectively unbounded-size problems
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Bucket aggregation is slow and allows memory movement

-l
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Chunking is better for performance!

A Baseline (s) Unified Mem (s) A Chunking (s)
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Summary

Complex attestation

sacrificing performance by restructuring
protocol execution to resource-constrained

can feasibly leverage

ZKPs

multi-scalar multiplication

GPUs

without completely

to move
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