
Co-designing Cryptographic Systems
with Resource-Constrained Hardware

Jean-Luc Watson

Dissertation Talk
5/7/24

New cryptographic primitives are very powerful

2

New cryptographic primitives are very powerful

3

!
Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

"

New cryptographic primitives are very powerful

4

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

"

New cryptographic primitives are very powerful

5

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

"

New cryptographic primitives are very powerful

6

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

Hospital 1

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them! Hospital 3

Hospital 2

"

New cryptographic primitives are very powerful

7

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

Hospital 1

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them! Hospital 3

Hospital 2

"

New cryptographic primitives are very powerful

8

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

Hospital 1

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them! Hospital 3

Hospital 2

"

New cryptographic primitives are very powerful

9

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

"

New cryptographic primitives are very powerful

10

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

Zero-knowledge
Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

???

⚙

"

New cryptographic primitives are very powerful

11

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

Zero-knowledge
Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

⚙

"

New cryptographic primitives are very powerful

12

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

Zero-knowledge
Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

✅

π

⚙

"

New cryptographic primitives are very powerful

13

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

Zero-knowledge
Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

✅

π

% ⚙

"

New cryptographic primitives are very powerful

14

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

Zero-knowledge
Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

⚙
✅

π

However! With great power comes great overheads

15

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

System throughput with 10k
mailboxes: < 50 msgs/sec
[ECG+21]

Multi-party
computation
[Yao86, GMW87]

Estimated training time for
VGG16: 2 weeks [WTB+21]

Zero-knowledge
Proofs
[FFS87]

Proving a correct ECDSA
signature: 45 sec*

However! With great power comes great overheads

16

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

System throughput with 10k
mailboxes: < 50 msgs/sec
[ECG+21]

Multi-party
computation
[Yao86, GMW87]

Estimated training time for
VGG16: 2 weeks [WTB+21]

Zero-knowledge
Proofs
[FFS87]

Proving a correct ECDSA
signature: 45 sec*

However! With great power comes great overheads

17
*https://github.com/0xPARC/circom-ecdsa#benchmarks

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

System throughput with 10k
mailboxes: < 50 msgs/sec
[ECG+21]

Multi-party
computation
[Yao86, GMW87]

Estimated training time for
VGG16: 2 weeks [WTB+21]

Zero-knowledge
Proofs
[FFS87]

Proving a correct ECDSA
signature: 45 sec*

However! With great power comes great overheads

18
*https://github.com/0xPARC/circom-ecdsa#benchmarks

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

System throughput with 10k
mailboxes: < 50 msgs/sec
[ECG+21]

Multi-party
computation
[Yao86, GMW87]

Estimated training time for
VGG16: 2 weeks [WTB+21]

Zero-knowledge
Proofs
[FFS87]

Proving a correct ECDSA
signature: 45 sec*

Let’s take advantage of new heterogeneous hardware!

There’s more hardware out there!

19

Billions of mobile phone customers with a processor in their hand

https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf

Increasingly-powerful GPUs are commonplace

20
https://blog.inten.to/hardware-for-deep-learning-part-3-gpu-8906c1644664

There’s faster hardware out there!

21

Naturally, platforms have some fundamental constraints

• Mobile platforms (e.g. embedded sensors, mobile phones)

More compute devices BUT limited on-device power and processing speed

22

Naturally, platforms have some fundamental constraints

• Mobile platforms (e.g. embedded sensors, mobile phones)

More compute devices BUT limited on-device power and processing speed

• Hardware accelerators (e.g. GPUs)

More compute cores BUT limited on-device memory

23

Naturally, platforms have some fundamental constraints

• Mobile platforms (e.g. embedded sensors, mobile phones)

More compute devices BUT limited on-device power and processing speed

• Hardware accelerators (e.g. GPUs)

More compute cores BUT limited on-device memory

My work: how to build cryptographic systems with these tradeoffs

Real-world applications can feasibly leverage advanced cryptographic

primitives without completely sacrificing performance by restructuring

the primitives to move protocol execution to resource-constrained

devices.

Thesis

24

Real-world applications can feasibly leverage advanced cryptographic

primitives without completely sacrificing performance by restructuring

the primitives to move protocol execution to resource-constrained

devices.

Thesis

25

Problems at a
useful scale

Real-world applications can feasibly leverage advanced cryptographic

primitives without completely sacrificing performance by

restructuring the primitives to move protocol execution to resource-

constrained devices.

Thesis

26

No free lunch, but
an affordable one

Real-world applications can feasibly leverage advanced cryptographic

primitives without completely sacrificing performance by restructuring

the primitives to move protocol execution to resource-constrained

devices.

Thesis

27

Systems-level modifications
around existing primitives

Real-world applications can feasibly leverage advanced cryptographic

primitives without completely sacrificing performance by restructuring

the primitives to move protocol execution to resource-constrained

devices.

Thesis

28

Take advantage of
heterogeneous hardware

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

This talk

29

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

Zero-knowledge
Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

⚙
&

Mobile phones GPUs

ZK Proofs
at Scale

GPUs

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

This talk

30

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

Zero-knowledge
Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

⚙
&

Mobile phones GPUs

ZK Proofs
at Scale

GPUs

31

An ideal backhaul system

[img src]

Monterey
Berkeley
Paris
Under a bridge in Minnesota
Fedex shipping depot

Sensor

https://www.pngall.com/portal-png/download/33548

32

An ideal backhaul system

Monterey
Berkeley
Paris
Under a bridge in Minnesota
Fedex shipping depot

Sensor

[img src]

Internet
data

https://www.pngall.com/portal-png/download/33548

33

An ideal backhaul system

Monterey
Berkeley
Paris
Under a bridge in Minnesota
Fedex shipping depot

Sensor

[img src]

Internet
data App Server

Airborne salinity study
Trash can servicing
Traffic conditions
Wildlife counting
Package tracking

https://www.pngall.com/portal-png/download/33548

34

Data is carried by 'mules' in close proximity

Sensor

[img src]

data

App Server

[icons by Icons Field from Noun Project]

Mules

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

35

Mules send data to a backhaul provider

Sensor

[img src]

data

App Server

[icons by Icons Field from Noun Project]

Mules

Platform
Provider

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

36

The provider forwards to paying servers

Sensor

[img src]

data App Server

[icons by Icons Field from Noun Project]

Mules

Platform
Provider

$

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

37

Mules send data to a backhaul provider

Sensor

[img src]

data App Server

[icons by Icons Field from Noun Project]

Mules

Platform
Provider

Backhaul systems are already being deployed

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

38

Centralized backhaul threatens privacy

Sensor

[img src]

App Server

[icons by Icons Field from Noun Project]

Mules

Platform
Provider

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

39

Centralized backhaul threatens privacy

Sensor

[img src]

App Server

[icons by Icons Field from Noun Project]

Mules

Platform
Provider

!
Sensor ID Mule ID Timestamp

square 1 1651762800

hospital 2 1651762803

. . .

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

40

Centralized backhaul threatens privacy

Sensor

[img src]

App Server

[icons by Icons Field from Noun Project]

Mules

Platform
Provider

!
Sensor ID Mule ID Timestamp

square 1 1651762800

hospital 2 1651762803

. . .
You can follow participants using this metadata!

[EuroSec ’22]

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607

Provider can run a valuable service if it is not concerned about privacy

Problem

41

Platform
Provider

!

Privacy ❌

Payment ✅

System Abuse

Prevention ✅

A provider can trivially support privacy by allowing any behavior

Problem

42

Platform
Provider

(

Privacy ✅

Payment ❌

System Abuse

Prevention ❌

A provider can trivially support privacy by allowing any behavior

Problem

43

Platform
Provider

(

Privacy ✅

Payment ❌

System Abuse

Prevention ❌

Challenge: have all three at the same time

Nebula’s approach: decentralize protocol onto mules

44

App Server
Platform
Provider

Sensor Mule

data flow
!

$$$

Nebula’s approach: decentralize protocol onto mules

45

App Server
Platform
Provider

Sensor Mule

data flow

"
$$$

Nebula’s approach: decentralize protocol onto mules

46

App Server
Platform
Provider

Sensor Mule

data flow

"
$$$

Out-of-band accounting: app servers buy untraceable tokens from

provider and exchange them for data.

(1) Token Pre-purchase

47

App Server
Platform
Provider

Sensor Mule "
$$

● At the beginning of an epoch, app servers pre-purchase tokens from

the provider

(2) Payload Delivery

48

App Server
Platform
Provider

Sensor Mule "

● Mules send data directly to application servers over anonymous

connections and receive tokens in exchange

payload

(3) Token Redemption

49

App Server
Platform
Provider

Sensor Mule "

● At the end of an epoch, mules redeem tokens with the platform

provider in exchange for compensation

$

Big problem: delivery misbehavior

50

"
App Server

Platform
Provider

Sensor Mule

not a payload

)

Mule Spam

51

"
App Server

Platform
Provider

Sensor Mule
)

Missing Token

payload

Big problem: delivery misbehavior

52

"
App Server

Platform
Provider

Sensor Mule

Bad/Duplicate Token

payload

)

Big problem: delivery misbehavior

(4) Complaint

53

App Server
Platform
Provider

Sensor Mule "

● After an epoch, if a mule notices misbehavior (e.g. invalid token), it

can complain to the provider for a new one

complaint

Platform
Provider

Complaints are based on app server commitments

54

Mule

App server
commitment

Before receiving data, app servers commit to token they will use if payload is uploaded

Platform
Provider

Complaints are based on app server commitments

55

Mule

App server
commitment

Before receiving data, app servers commit to token they will use if payload is uploaded

A new token is granted for proof of misbehavior

Supporting upload in varied environments

56

We measured likely frequency of sensor-mule interaction

Supporting upload in varied environments

57

We measured likely frequency of sensor-mule interaction, and duration of data transfer

Supporting upload in varied environments

58

We measured likely frequency of sensor-mule interaction, and duration of data transfer

DTLS over BLE!

Supporting upload in varied environments

59

We measured likely frequency of sensor-mule interaction, and duration of data transfer

Example: in a park, we can expect a mule every few minutes,

each with a transmission window of 5 to 10 seconds, supporting 2 to 16kB payloads

60

Provider performance
High-throughput database to check token validity and detect duplicates.

61

Provider performance
High-throughput database to check token validity and detect duplicates.

 Fast enough for every person in the US to redeem tokens once a month

240M token/$

__________________ can feasibly leverage ________________ without completely

sacrificing performance by restructuring _________________________ to move

protocol execution to resource-constrained __________.

62

Summary

Backhaul networks Metadata-hiding

payment/abuse prevention

phones

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

This talk

63

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

Zero-knowledge
Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

⚙
&

Mobile phones GPUs

ZK Proofs
at Scale

GPUs

Secure multi-party computation (MPC) [Yao86, GMW87]

64

P3

input_2

input_3

input_1

P1

P2
???

???

Result!

MPC has a performance problem

65

Plaintext MPC-based

AES Encryption < 100 ns1 ~1 ms / block [DG21]

ML Inference (VGG16) 58 ms 100 seconds [WTB+21]

ML Training (VGG16) 250 seconds Estimated 14 days [WTB+21]

1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor

P3

input_2

input_3

input_1

P1

P2
???

???

Result!

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

66

Piranha

Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)

67

Piranha

Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)

x y+ = z

68

Piranha

Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)

x y+ = z

x1

x2

x3

y1

y2

y3

z1

z2

z3

69

Piranha

Goal: make accelerating secure MPC practical

(linear secret-sharing protocols)

x y+ = z

x1

x2

x3

y1

y2

y3

+

+

+

z1

z2

z3

=

=

=

Creating a usable platform for MPC

70

NN Library

Custom/
tailored MPC
functionality

Monolithic

Piranha uses a modular approach to avoid redundancy and easily reuse MPC
protocols in different settings.

Creating a usable platform for MPC

71

NN Library

Custom/
tailored MPC
functionality

Monolithic

Protocol Layer

Modular

Device Layer

Application
Layer

Piranha’s architecture in practice

72

Fully-connected NN
layer w/ ReLU

Secret-shared matrix
multiplication +

comparison

Matmul and
comparison kernels

NN Library

Custom/
tailored MPC
functionality

Protocol Layer

Device Layer

Application
Layer

Problem 1: Performant linear operations for MPC

73

Fully-connected NN
layer w/ ReLU

Secret-shared matrix
multiplication +

comparison

Matmul and
comparison kernels

NN Library

Custom/
tailored MPC
functionality

Protocol Layer

Device Layer

Application
Layer

(1) Integer-based GPU acceleration is missing

74

LSS protocols operate over integer rings and use

fixed point encoding for ML training to encode real

values.

Big issue: no performant kernels are available for

integer GEMM (general matrix multiplication)

Protocol
Layer

Device
Layer

Application
Layer

(1) Prior work adapts floating point kernels

75

Assumes floating point
performance outweighs overhead.

Protocol
Layer

Device
Layer

Application
Layer

Prior work [TKT+21] splits 64-bit integers into 16-

bit float chunks, incurring compute overhead.

GEMM x 10

Piranha provides integer kernels directly to MPC

protocols

We implement 32/64-bit integer kernels with

CUTLASS1.

(1) Piranha directly uses GPU integer cores

76

Protocol
Layer

Device
Layer

Application
Layer

1https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass

Piranha provides integer kernels directly to MPC
protocols

We implement 32/64-bit integer kernels with
CUTLASS1.

10x cuBLAS f64: 47 ms | Piranha int64: 4.9 ms

(1) Piranha directly uses GPU integer cores

77

Protocol
Layer

Device
Layer

Application
Layer

1https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass

(1) Piranha directly uses GPU integer cores

78

Lesson: make sure you’re using the right tools for the job

Problem 2: Memory-efficient comparisons

79

Fully-connected NN
layer w/ ReLU

Secret-shared matrix
multiplication +

comparison

Matmul and
comparison kernels

NN Library

Custom/
tailored MPC
functionality

Protocol Layer

Device Layer

Application
Layer

● The issue: Secret-sharing induces data

duplication that stresses on-GPU memory.

(2) MPC rapidly consumes GPU memory

80

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

x0

x1

x2

x3

x4

x5

x6

x7

Protocol
Layer

Device
Layer

Application
Layer

● Oblivious comparisons (e.g. ReLU) add

memory stress because they compute over

secret values bit-by-bit.
● Additional allocation will constrain our

useful problem size.

(2) Comparisons are the prime culprit

81

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

x0

x1

x2

x3

x4

x5

x6

x7

Protocol
Layer

Device
Layer

Application
Layer

b0b1b2…b62b63

(2) Naïve string multiplication

82

b0

b1

b2

b3

𝑏𝑐 = ∏
𝑖

𝑏𝑖

(2) Naïve string multiplication

83

b0

b1

b2

b3

b0

b2

b1

b3
* =

b’0

b’1
b’0 b’1* = bc

𝑏𝑐 = ∏
𝑖

𝑏𝑖

(2) The naïve protocol wastes memory

84

b0

b1

b2

b3

b0

b2

b1

b3
* =

b’0

b’1
b’0 b’1* = bc

𝑏𝑐 = ∏
𝑖

𝑏𝑖

● Piranha allows protocols to use iterator-based views for intricate data
access patterns:

(2) Iterator-based views keep memory in one place

85

b0

b1

b2

b3

b0

b2

b1

b3
* =

b’0

b’1
b’0 b’1* = bc

𝑏𝑐 = ∏
𝑖

𝑏𝑖

● Piranha allows protocols to use iterator-based views for intricate data
access patterns:

(2) Iterator-based views keep memory in one place

86

b0

b1

b2

b3

b’0 b’1* = bc* =

b’0

b’1

𝑏𝑐 = ∏
𝑖

𝑏𝑖

● Piranha allows protocols to use iterator-based views for intricate data
access patterns:

(2) Iterator-based views keep memory in one place

87

b0

b1

b2

b3

* =

bc

* =

b’0

b’1

𝑏𝑐 = ∏
𝑖

𝑏𝑖

Microbenchmarks: is Piranha performant?

88

273x

~104 x

120x

Piranha boosts performance by several orders of magnitude across a
range implemented MPC protocols.

Memory Efficiency

89

max memory load
2.3 GB

Memory Efficiency

90

2.3 GB

1.4 GB 581 MB

Iterator-based and correct typing allows Piranha to drastically
reduce on-device memory consumption.

End-to-end training: is Piranha usable?

91

Falcon estimated that the same
training run would take it 14 days
on a CPU

Piranha accelerates a 3-party
protocol to complete 10 epochs of
VGG16 training in just 33 hours!

__________________ can feasibly leverage ________________ without completely

sacrificing performance by restructuring _________________________ to move

protocol execution to resource-constrained __________.

92

Summary

Private ML training MPC

local share operations

GPUs

Metadata-hiding
communication
[CGB+15, KCG+17, ECG+21, AS16, …]

Disguise communication
patterns so that interested
observers cannot tell who is
talking!

This talk

93

Multi-party
computation
[Yao86, GMW87]

Compute a shared result
from each of your private
inputs without revealing
them!

Zero-knowledge
Proofs
[FFS87]

Prove that you know
something without revealing
what it is!

⚙
&

Mobile phones GPUs

ZK Proofs
at Scale

GPUs

● Piranha designed a platform for on-device training and optimized memory

usage within the confines of a single GPU

Scaling zero-knowledge proofs

vs.

94

✅ ? π ✅ ? π

● Piranha designed a platform for on-device training and optimized memory usage

within the confines of a single GPU

● Zero-knowledge proofs are even more memory-intensive (many GBs per proof)

Scaling zero-knowledge proofs

vs.

95

✅ ? π ✅ ? π

What happens when we run out of GPU memory entirely?

● MSM size scales as a function of the circuit parameters
○ (e.g. 220 for a single signature verification)

Focus on a critical bottleneck (~80%):
multi-scalar multiplication

96

 scalar elliptic curve point

Simple idea: leverage unified memory to increase scale

97

'Normal'

CPU Memory GPU Memory

explicit copies

memcpy

page
fault

Simple idea: leverage unified memory to increase scale

98

'Normal'

CPU Memory GPU Memory

explicit copies

memcpy

Unified Memory

paging into host memory

CPU Memory GPU Memory

Now we see a small but persistent paging overhead

99

Now we see a small but persistent paging overhead

100Can we do better?

How does an MSM work?

101

Points Scalars

Buckets

How does an MSM work?

102

Points Scalars

Buckets
aggregate points into

buckets based on
corresponding scalar

1

3

2

How does an MSM work?

103

Points Scalars

Buckets
add points into

buckets based on
corresponding scalar

1

3

2

multiply the buckets
for your result!

How does an MSM work?

104

Points Scalars

Buckets
add points into

buckets based on
corresponding scalar

1

3

2

multiply the buckets
for your result!

Idea: spill GPU memory to both CPU and disk

105

CPU main memory

SSD

SSD

Idea: spill GPU memory to both CPU and disk

106

CPU main memory

SSD

SSD

Hypothesis: slow computation time of chunked MSM segments can hide memory

access latency for next chunk, allowing effectively unbounded-size problems

Bucket aggregation is slow and allows memory movement

107

Chunking is better for performance!

108

__________________ can feasibly leverage ________________ without completely

sacrificing performance by restructuring _________________________ to move

protocol execution to resource-constrained __________.

109

Summary

Complex attestation ZKPs

multi-scalar multiplication

GPUs

Co-designing Cryptographic Systems
with Resource-Constrained Hardware

Jean-Luc Watson

Dissertation Talk
5/7/24

