
Co-designing Cryptographic Systems 
with Resource-Constrained Hardware 

Jean-Luc Watson 

Dissertation Talk 
5/7/24



New cryptographic primitives are very powerful

2



New cryptographic primitives are very powerful

3

!
Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 



"

New cryptographic primitives are very powerful

4

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 



"

New cryptographic primitives are very powerful

5

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 



"

New cryptographic primitives are very powerful

6

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 

Hospital 1

Multi-party 
computation 
[Yao86, GMW87] 

Compute a shared result 
from each of your private 
inputs without revealing 
them! Hospital 3

Hospital 2



"

New cryptographic primitives are very powerful

7

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 

Hospital 1

Multi-party 
computation 
[Yao86, GMW87] 

Compute a shared result 
from each of your private 
inputs without revealing 
them! Hospital 3

Hospital 2



"

New cryptographic primitives are very powerful

8

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 

Hospital 1

Multi-party 
computation 
[Yao86, GMW87] 

Compute a shared result 
from each of your private 
inputs without revealing 
them! Hospital 3

Hospital 2



"

New cryptographic primitives are very powerful

9

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 

Multi-party 
computation 
[Yao86, GMW87] 

Compute a shared result 
from each of your private 
inputs without revealing 
them! 



"

New cryptographic primitives are very powerful

10

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 

Multi-party 
computation 
[Yao86, GMW87] 

Compute a shared result 
from each of your private 
inputs without revealing 
them! 

Zero-knowledge 
Proofs 
[FFS87] 

Prove that you know 
something without revealing 
what it is! 

???

⚙



"

New cryptographic primitives are very powerful

11

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 

Multi-party 
computation 
[Yao86, GMW87] 

Compute a shared result 
from each of your private 
inputs without revealing 
them! 

Zero-knowledge 
Proofs 
[FFS87] 

Prove that you know 
something without revealing 
what it is! 

⚙



"

New cryptographic primitives are very powerful

12

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 

Multi-party 
computation 
[Yao86, GMW87] 

Compute a shared result 
from each of your private 
inputs without revealing 
them! 

Zero-knowledge 
Proofs 
[FFS87] 

Prove that you know 
something without revealing 
what it is! 

✅  

π

⚙



"

New cryptographic primitives are very powerful

13

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 

Multi-party 
computation 
[Yao86, GMW87] 

Compute a shared result 
from each of your private 
inputs without revealing 
them! 

Zero-knowledge 
Proofs 
[FFS87] 

Prove that you know 
something without revealing 
what it is! 

✅  

π

% ⚙



"

New cryptographic primitives are very powerful

14

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

Disguise communication 
patterns so that interested 
observers cannot tell who is 
talking! 

Multi-party 
computation 
[Yao86, GMW87] 

Compute a shared result 
from each of your private 
inputs without revealing 
them! 

Zero-knowledge 
Proofs 
[FFS87] 

Prove that you know 
something without revealing 
what it is! 

⚙
✅  

π



However! With great power comes great overheads

15

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

System throughput with 10k 
mailboxes: < 50 msgs/sec 
[ECG+21] 

Multi-party 
computation 
[Yao86, GMW87] 

Estimated training time for 
VGG16: 2 weeks [WTB+21] 

Zero-knowledge 
Proofs 
[FFS87] 

Proving a correct ECDSA 
signature: 45 sec* 



However! With great power comes great overheads

16

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

System throughput with 10k 
mailboxes: < 50 msgs/sec 
[ECG+21] 

Multi-party 
computation 
[Yao86, GMW87] 

Estimated training time for 
VGG16: 2 weeks [WTB+21] 

Zero-knowledge 
Proofs 
[FFS87] 

Proving a correct ECDSA 
signature: 45 sec* 



However! With great power comes great overheads

17
*https://github.com/0xPARC/circom-ecdsa#benchmarks

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

System throughput with 10k 
mailboxes: < 50 msgs/sec 
[ECG+21] 

Multi-party 
computation 
[Yao86, GMW87] 

Estimated training time for 
VGG16: 2 weeks [WTB+21] 

Zero-knowledge 
Proofs 
[FFS87] 

Proving a correct ECDSA 
signature: 45 sec* 



However! With great power comes great overheads

18
*https://github.com/0xPARC/circom-ecdsa#benchmarks

Metadata-hiding 
communication 
[CGB+15, KCG+17, ECG+21, AS16, …] 

System throughput with 10k 
mailboxes: < 50 msgs/sec 
[ECG+21] 

Multi-party 
computation 
[Yao86, GMW87] 

Estimated training time for 
VGG16: 2 weeks [WTB+21] 

Zero-knowledge 
Proofs 
[FFS87] 

Proving a correct ECDSA 
signature: 45 sec* 

Let’s take advantage of new heterogeneous hardware!



There’s more hardware out there!
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Billions of mobile phone customers with a processor in their hand

https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf



Increasingly-powerful GPUs are commonplace

20
https://blog.inten.to/hardware-for-deep-learning-part-3-gpu-8906c1644664

There’s faster hardware out there!
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Naturally, platforms have some fundamental constraints

• Mobile platforms (e.g. embedded sensors, mobile phones)

More compute devices BUT limited on-device power and processing speed

• Hardware accelerators (e.g. GPUs)

More compute cores BUT limited on-device memory

My work: how to build cryptographic systems with these tradeoffs
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An ideal backhaul system

Monterey 
Berkeley 
Paris 
Under a bridge in Minnesota 
Fedex shipping depot

Sensor

[img src]

Internet
data App Server

Airborne salinity study 
Trash can servicing 
Traffic conditions 
Wildlife counting 
Package tracking

https://www.pngall.com/portal-png/download/33548
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Data is carried by 'mules' in close proximity

Sensor

[img src]

data

App Server

[icons by Icons Field from Noun Project]

Mules

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607
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Mules send data to a backhaul provider 
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The provider forwards to paying servers
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Mules send data to a backhaul provider 

Sensor

[img src]

data App Server

[icons by Icons Field from Noun Project]

Mules

Platform 
Provider

Backhaul systems are already being deployed 

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607
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Centralized backhaul threatens privacy
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Centralized backhaul threatens privacy

Sensor

[img src]

App Server

[icons by Icons Field from Noun Project]

Mules

Platform 
Provider

!
Sensor ID Mule ID Timestamp

square 1 1651762800

hospital 2 1651762803

. . .
You can follow participants using this metadata! 

[EuroSec ’22]

https://www.pngall.com/portal-png/download/33548
https://thenounproject.com/browse/collection-icon/smart-home-191607


Provider can run a valuable service if it is not concerned about privacy

Problem
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Platform 
Provider

(

Privacy ✅

Payment ❌

System Abuse 

Prevention ❌

Challenge: have all three at the same time
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App Server
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Provider

Sensor Mule

data flow

"
$$$

Out-of-band accounting: app servers buy untraceable tokens from 

provider and exchange them for data.



(1) Token Pre-purchase
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$$

● At the beginning of an epoch, app servers pre-purchase tokens from 

the provider
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● Mules send data directly to application servers over anonymous 

connections and receive tokens in exchange

payload
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App Server
Platform 
Provider

Sensor Mule "

● At the end of an epoch, mules redeem tokens with the platform 

provider in exchange for compensation

$
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"
App Server

Platform 
Provider

Sensor Mule

Bad/Duplicate Token

payload

)

Big problem: delivery misbehavior



(4) Complaint
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App Server
Platform 
Provider

Sensor Mule "

● After an epoch, if a mule notices misbehavior (e.g. invalid token), it 

can complain to the provider for a new one

complaint
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Mule

App server 
commitment

Before receiving data, app servers commit to token they will use if payload is uploaded 

A new token is granted for proof of misbehavior
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Supporting upload in varied environments
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We measured likely frequency of sensor-mule interaction, and duration of data transfer

DTLS over BLE!



Supporting upload in varied environments
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We measured likely frequency of sensor-mule interaction, and duration of data transfer

Example: in a park, we can expect a mule every few minutes, 

each with a transmission window of 5 to 10 seconds, supporting 2 to 16kB payloads
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Provider performance
High-throughput database to check token validity and detect duplicates.
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Provider performance
High-throughput database to check token validity and detect duplicates.

             

 Fast enough for every person in the US to redeem tokens once a  month

240M token/$



__________________ can feasibly leverage ________________ without completely 

sacrificing performance by restructuring _________________________ to move 

protocol execution to resource-constrained __________.
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Summary

Backhaul networks Metadata-hiding

payment/abuse prevention

phones
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Secure multi-party computation (MPC) [Yao86, GMW87]

64

P3

input_2

input_3

input_1

P1

P2
???

???

Result!



MPC has a performance problem
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Plaintext MPC-based

AES Encryption < 100 ns1 ~1 ms / block [DG21]

ML Inference (VGG16) 58 ms 100 seconds [WTB+21]

ML Training (VGG16) 250 seconds Estimated 14 days [WTB+21]

1https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf, assuming a 3.0GHz processor

P3

input_2

input_3

input_1

P1

P2
???

???

Result!

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
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Creating a usable platform for MPC
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Piranha uses a modular approach to avoid redundancy and easily reuse MPC 
protocols in different settings. 

 

Creating a usable platform for MPC

71

NN Library 

Custom/ 
tailored MPC 
functionality

Monolithic

Protocol Layer

Modular

Device Layer

Application 
Layer



Piranha’s architecture in practice
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Fully-connected NN 
layer w/ ReLU

Secret-shared matrix 
multiplication + 

comparison

Matmul and 
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NN Library 
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Device Layer

Application 
Layer



Problem 1: Performant linear operations for MPC
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(1) Integer-based GPU acceleration is missing

74

LSS protocols operate over integer rings and use 

fixed point encoding for ML training to encode real 

values. 

Big issue: no performant kernels are available for 

integer GEMM (general matrix multiplication)

Protocol 
Layer

Device 
Layer

Application 
Layer



(1) Prior work adapts floating point kernels
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Assumes floating point 
performance outweighs overhead.

Protocol 
Layer

Device 
Layer

Application 
Layer

Prior work [TKT+21] splits 64-bit integers into 16-

bit float chunks, incurring compute overhead.

GEMM x 10



Piranha provides integer kernels directly to MPC 

protocols 

We implement 32/64-bit integer kernels with 

CUTLASS1.

(1) Piranha directly uses GPU integer cores

76

Protocol 
Layer

Device 
Layer

Application 
Layer

1https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass


Piranha provides integer kernels directly to MPC 
protocols 

We implement 32/64-bit integer kernels with 
CUTLASS1. 

10x cuBLAS f64: 47 ms  |  Piranha int64: 4.9 ms

(1) Piranha directly uses GPU integer cores
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Protocol 
Layer

Device 
Layer

Application 
Layer

1https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass


(1) Piranha directly uses GPU integer cores
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Lesson: make sure you’re using the right tools for the job



Problem 2: Memory-efficient comparisons
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multiplication + 
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● The issue: Secret-sharing induces data 

duplication that stresses on-GPU memory. 

 

(2) MPC rapidly consumes GPU memory
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● Oblivious comparisons (e.g. ReLU) add 

memory stress because they compute over 

secret values bit-by-bit. 
● Additional allocation will constrain our 

useful problem size. 

 

(2) Comparisons are the prime culprit
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(2) The naïve protocol wastes memory

84

b0

b1

b2

b3

b0

b2

b1

b3
* =

b’0

b’1
b’0 b’1* = bc

𝑏𝑐 = ∏
𝑖

𝑏𝑖



● Piranha allows protocols to use iterator-based views for intricate data 
access patterns: 
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● Piranha allows protocols to use iterator-based views for intricate data 
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● Piranha allows protocols to use iterator-based views for intricate data 
access patterns:

(2) Iterator-based views keep memory in one place
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Microbenchmarks: is Piranha performant?
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273x

~104 x

120x

Piranha boosts performance by several orders of magnitude across a 
range implemented MPC protocols. 



Memory Efficiency 
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max memory load
2.3 GB



Memory Efficiency 

90

2.3 GB

1.4 GB 581 MB

Iterator-based and correct typing allows Piranha to drastically 
reduce on-device memory consumption. 



End-to-end training: is Piranha usable?

91

Falcon estimated that the same 
training run would take it 14 days 
on a CPU 

Piranha accelerates a 3-party 
protocol to complete 10 epochs of 
VGG16 training in just 33 hours! 



__________________ can feasibly leverage ________________ without completely 

sacrificing performance by restructuring _________________________ to move 

protocol execution to resource-constrained __________.
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Summary

Private ML training MPC

local share operations

GPUs
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[FFS87] 

Prove that you know 
something without revealing 
what it is! 

⚙
&

Mobile phones GPUs

ZK Proofs 
at Scale

GPUs



● Piranha designed a platform for on-device training and optimized memory 

usage within the confines of a single GPU 

 

Scaling zero-knowledge proofs

vs.
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● Piranha designed a platform for on-device training and optimized memory usage 

within the confines of a single GPU 

● Zero-knowledge proofs are even more memory-intensive (many GBs per proof) 

 

Scaling zero-knowledge proofs

vs.
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What happens when we run out of GPU memory entirely?



● MSM size scales as a function of the circuit parameters 
○ (e.g. 220 for a single signature verification) 

 

Focus on a critical bottleneck (~80%): 
multi-scalar multiplication
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 scalar  elliptic curve point



Simple idea: leverage unified memory to increase scale
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'Normal'

CPU Memory GPU Memory

explicit copies

memcpy



page 
fault

Simple idea: leverage unified memory to increase scale

98

'Normal'

CPU Memory GPU Memory

explicit copies

memcpy

Unified Memory

paging into host memory

CPU Memory GPU Memory



Now we see a small but persistent paging overhead
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Now we see a small but persistent paging overhead

100Can we do better?



How does an MSM work?
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Points Scalars

Buckets



How does an MSM work?
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Points Scalars

Buckets
aggregate points into 

buckets based on 
corresponding scalar

1

3

2



How does an MSM work?

103

Points Scalars

Buckets
add points into 

buckets based on 
corresponding scalar

1

3

2

multiply the buckets 
for your result!



How does an MSM work?

104

Points Scalars

Buckets
add points into 

buckets based on 
corresponding scalar

1

3

2

multiply the buckets 
for your result!



Idea: spill GPU memory to both CPU and disk
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CPU main memory 

SSD 

SSD 



Idea: spill GPU memory to both CPU and disk
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CPU main memory 

SSD 

SSD 

Hypothesis: slow computation time of chunked MSM segments can hide memory 

access latency for next chunk, allowing effectively unbounded-size problems



Bucket aggregation is slow and allows memory movement
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Chunking is better for performance!

108



__________________ can feasibly leverage ________________ without completely 

sacrificing performance by restructuring _________________________ to move 

protocol execution to resource-constrained __________.
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Summary

Complex attestation ZKPs

multi-scalar multiplication

GPUs
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