
Retcon: Live Updates for Embedded Event-Driven Applications
Jean-Luc Watson

University of California, Berkeley
jlw@berkeley.edu

Saharsh Agrawal
University of California, Berkeley
saharshagrawal@berkeley.edu

Ryan Tsang
University of California, Berkeley

r_tsang@berkeley.edu

Sherry Luo
University of California, Berkeley
sherry.z.luo123@berkeley.edu

Raluca Ada Popa
University of California, Berkeley

raluca.popa@berkeley.edu

Prabal Dutta
University of California, Berkeley

prabal@berkeley.edu

Abstract
Embedded systems are deeply integrated into critical applications
but, despite their importance, lack an effective means to apply over-
the-air software patches without significant downtime. Standard
mechanisms for firmware updates require device reboots that wipe
important in-memory state. Prior efforts have proposed “live” up-
dates to address this problem, applying patches to an embedded
application without a reset, but they tackle a limited set of appli-
cations or propose a clean-slate design. In this paper, we present
Retcon, a live update toolchain for embedded systems that supports
a familiar event-driven programming model and does not require
application code changes. Retcon leverages static analysis at com-
pile time to determine when it will be safe to update a device. To
find safe update points in the presence of complex asynchronous
behavior, we define a novel system state, asynchronous quiescence,
in which an update can be applied. We evaluate Retcon on a set of
embedded event-driven applications – a dual-chamber pacemaker
model, a programmable logic controller runtime, an artificial pan-
creas system, and a sensing node – and demonstrate Retcon’s ability
to make low-overhead updates in less than one millisecond.

1 Introduction
Low-power embedded systems are used in a variety of high-availability
applications, particularly in the medical and industrial automation
fields [52, 59]. Although embedded systems often perform simple
tasks, they form a quickly expanding (and aging) infrastructure
that requires frequent software updates to continue executing se-
curely and safely. In particular, increased connectivity of embedded
devices has exposed them to attack vectors that require urgent se-
curity patches. For example, a 465,000-strong pacemaker recall [14]
was required after a vulnerability in their communication stack was
found, and a similar attack affecting pacemakers using Bluetooth
Low Energy [58] occured 2020. Breaches can also affect critical
infrastructure: the Indian power grid saw compromises of their
operations networks in early 2021 through Internet-connected cam-
eras [16].

Downtime from applying patches in highly-deployed systems
can have significant impact [35]. Existing device firmware update
(DFU) mechanisms require a device to reboot into a new firmware
version after an update [2, 6, 26, 51]. Programmable logic con-
trollers (PLCs), used for low-level control in automated industrial
equipment [8], must therefore shut down the physical systems
(e.g. electric motors or manipulators) they control [5, 39], while
medical devices often require an in-person visit for urgent security
patches [14, 29]. After a reboot, the update has wiped any useful
in-memory state accumulated by the previous version.

A growing body of research has focused on providing a live up-
date capability, in which a device is updated seamlessly from one
patch to the next, without incurring any downtime or state loss. Ex-
isting approaches remain limited: frameworks for general-purpose
computing rely on expensive runtime monitoring [11, 17, 36, 43],
and some prior efforts for embedded systems avoid state transfer
entirely [38, 41]. In particular, applications are often restricted to
simple cyclic execution [15, 47, 56] where updates always occur at
the start of a read-compute-write cycle. While this simplifies update
analysis, it also restricts updates to a small application subset.

A much broader set of embedded applications operate in an
event-driven model, executing in response to asynchronous events
(e.g. a timer expiration, or reception of network data). Event-driven
code is in widespread use in a slew of embedded operating systems
(OSes) developed over the past two decades [2, 6, 7, 13, 31, 33].
Unfortunately, no current live update mechanisms can operate
in this setting without a clean-slate OS design [13, 18, 21, 56] –
a serious barrier to adoption, where patches on legacy code are
needed most of all. In this paper, we explore the question: how
do we design a live update mechanism that supports event-driven
applications, without requiring code modification, while enabling
near-instantaneous updates on constrained embedded platforms?

To answer this question, we introduce Retcon, a live update
toolchain for embedded systems that supports unmodified event-
driven applications. Retcon consists of two major components:
a static analysis toolchain that generates update instructions at
compile time, and a lightweight runtime executing on the target
embedded device. Retcon determines both when it is safe to apply a
patch without disrupting the device and how to migrate state to the
new version. In doing so, it must support event-based applications
that are significantly more complex than envisioned in prior work
(Section 2), requiring new approaches in this setting to support
efficient live updates, discussed below.

Control-flow static analysis. The targeted event-based appli-
cations consist of many handlers that execute in response to specific
events. They will also routinely create asynchronous requests to
the device OS that remain outstanding even while the application
is idle. Handlers might receive events in any order, with no partic-
ular guarantees about when “in-flight” asynchronous operations
will be completed. In larger applications, reasoning about event
interleaving is error-prone at best, even for the original developer.
Thus, a programmatic mechanism for detecting safe update points
is necessary. Retcon solves this by contributing a more powerful
static analysis model that forms a control-flow graph (CFG) of ap-
plication behavior based on the application source code. It tracks

IPSN ’24, May 13–16, 2024, Hong Kong, China Watson et al.

relevant system state, including hardware configuration, and ac-
tive asynchronous operations. To patch applications with minimal
interruption, Retcon’s primary design philosophy is to limit run-
time overhead by moving analysis to a compile time phase that can
reason over this CFG, which we discuss in more detail in Section 4.

Asynchronous quiescence. Prior work commonly assumes that
when an application is “quiescent” and the processor is idle, the
system can be safely updated [46]. Unfortunately, this is no longer
the case in an event-driven system, since pending asynchronous
operations might generate unexpected events during or after the
update. For example, a running timer started by the original appli-
cation might expire and trigger an actuator after an update, causing
real-world injury. Retcon introduces a novel notion of asynchronous
quiescence (Section 4.1): live updates are applied only when no tasks
are executing and we know that existing in-flight asynchronous
operations will not trigger events during or after the update. The
latter condition can be satisfied if, for example, the new applica-
tion would immediately cancel or reset any outstanding operations.
We compare the CFGs of the original and patched applications to
identify the desired behavior.

Detecting update points at runtime. Detecting asynchronous
quiescence, and confirming that a system has reached a valid update
point at runtime, requires significant inspection of application state
that cannot be performed on the embedded target. To address this
challenge, Retcon’s toolchain calculates a set of simple predicates
that the embedded runtime can evaluate over application state to
verify a correct update point, without performing any analysis
itself. Once a valid update point is detected, the runtime uses a
matching set of transfer instructions to synchronize memory state
between the application versions. We demonstrate that even for
applications with many such predicates, they are processed with
minimal overhead.

Implementation.We implement Retcon’s static analysis toolchain
and embedded runtime for the Zephyr RTOS [2], targeting an
nRF9160 SiP embedded platform, and evaluate Retcon’s ability to
efficiently and safely perform live updates on four event-driven
applications: a pacemaker controller, an Artificial Pancreas System
(APS), a simple PLC runtime, and a sense-and-send application in-
tegrating a third-party MQTT library [9] (Section 6). Compared to
standard updatemechanisms, which require over 4 seconds for a full
firmware flash and reboot, and 1.9 ms for an OS-based application
swap, Retcon can apply updates live in less than a millisecond.

Such a capability enables a new generation of embedded systems
to truly offer zero downtime by embracing a safe, continuous, and
live update function.

2 Related Work
Systems for performing live updates have been heavily investigated
as a way to avoid system downtime. A key early result by Gupta et
al. [20] showed that determining the validity of a live update for
general programs is adjacent to solving the halting problem, and
thus undecidable. As a result, avoiding full generality by specifying
additional constraints on the supported programming model, or
requiring additional external information from applications, is a
common feature of any live update mechanism [17, 43].

2.1 General-purpose live updates
One of the earliest dynamic update systems, Ksplice [4], targets
small code-only security patches for Linux, installing code tram-
polines to jump into a patch from the original binary. Critically,
this requires freezing execution, something which could affect the
safety of embedded applications with real-world sensing and actu-
ation tasks. Similarly, kGraft [50] routes application processes to
original or updated code based on when they entered the kernel.
Kup [28] uses a checkpoint mechanism to restore processes after
an update, but incurs a restart.

Live update systems targeted at powerful server-class appli-
cations require significant runtime processing, such as stack un-
rolling [19, 27, 36, 42], although this allows applications to update at
any point, rather than waiting for a quiescent state without active
stack frames. ProteOS [17] relies on runtime memory tagging to
track and transfer state, synchronously updating while suspending
the system, resulting in a significant memory overhead (approxi-
mately 35%) ill-suited for a memory-constrained embedded device.
Mvedsua [43], DynAMOS [37], POLUS [11], and Mx [23] each rely
on multiversion execution, running the updated application in par-
allel during a swap-over period. With limited memory and compute
capability on embedded devices, this approach would change ap-
plication resource availability during an update; in contrast, we
target near-instantaneous switch between versions without overlap.
Ginseng [40] and Javelus [19] rely on lazy state transfer, interpos-
ing on accesses to memory in the updated process to copy state.
However, this results in an indeterminate overhead after an update.
A complex runtime increases system memory footprint and the
interruption time during an update; Retcon pushes as much com-
putation as possible to offline analysis, providing a device with a
straightforward set of simple instructions at runtime.

Systems like Kitsune [22] or ProteOS [17] simplify the process
of detecting update points by asking application developers to
identify update points. In the event-driven model, however, this
approach does not scale well. Event-triggered tasks can interleave
in a complex manner based on when events arrive, resulting in
a state machine that is difficult to completely explore manually,
even for the code’s author. Instead, we show that static analysis
can automatically find events and system states that indicate valid
update points in these applications.

A number of live update-adjacent systems have been proposed.
Several virtual machines designed specifically for constrained em-
bedded platforms [30, 44] can make application updates signifi-
cantly easier, although still requiring an application restart. Neu-
tron [12] reboots individual system components suffering from
hardware faults while protecting precious memory from reinitial-
ization, but doesn’t apply updated software or identify safe update
points. Retcon is complimentary to efforts efficiently distributing
updates across wireless networks [24, 32, 49], focusing on the up-
date once it arrives on-device.

2.2 Embedded live update systems
The need for software updates on high-availability embedded sys-
tems has motivated a significant amount of work on live updates.
Table 1 compares Retcon’s capabilities and programming model
against prior work in the area.

Retcon: Live Updates for Embedded Event-Driven Applications IPSN ’24, May 13–16, 2024, Hong Kong, China

Table 1: Summary of prior work in live update systems for embedded platforms. While existing systems rely on simplified
cyclic programming models or require clean-slate component-based designs, Retcon supports whole-application updates in a
broader event-driven programming model, and identifies correct, safe update points to begin executing a new version.

System Unit of update State transfer Programming model Condition for safe update point

DURTS [38], HERA [41] Hotpatch ✗ Task ✗

Seifzadeh et al. [47] Application ✗ Cyclic Cycle end
Fischmeister et al. [15] Component ✗ Cyclic Cycle end
SOS [21] Component ✗ Event-driven ✗

Contiki [13] Component ✓ Event-driven ✗

FASA [53–56] Component ✓ Cyclic Cycle end
ELUS [18] Component ✓ Task/Cyclic Task quiescence
Retcon (this paper) Application ✓ Event-driven Asynchronous quiescence

Many existing systems have considered updating portions of ap-
plications, which constrains the scope of possible updates. DURTS [38]
modifies function pointers to redirect applications to updated func-
tionality, cannot perform more substantial updates that require
changes to control flow. Similarly, HERA [41] uses ARM debugging
hardware to dynamically insert patches, but updates are limited
to “small, isolated, and featureless” [3] segments, and do not sur-
vive a reboot if it were to occur. Dynamic operating systems with
a clean-slate modular designs, like SOS [21] or Contiki [13], sup-
port dynamic reconfiguration by loading individual application
components, which are linked together and managed by the run-
time. However, this requires rewriting applications to fit into these
new frameworks. In contrast, Retcon focuses on whole application
updates, allowing for significant internal changes like modified
control flow, removing the risk of component incompatibilities, and
allowing live updates to be performed on commonly-used RTOSes
without a component-based architecture [2, 7, 31].

The ability for an application to transfer and retain important
state during an update is critical for a live update capability. How-
ever, a significant number of prior systems ([15, 21, 38, 41, 47])
support only code changes without considering state transfer. Ret-
con leverages compile-time static analysis to compare application
versions and determine which state to transfer at runtime.

Furthermore, prior work has focused on simple programming
models that do not translate to more complex applications. For
example, Seifzadeh et al. [47] and Fischmeister et al. [15] focus
on a cyclic programming model, in which inputs are read at the
beginning of each cycle, a static set of tasks is executed, and outputs
are written. Updates in these systems without state transfer are
completed simply by updating the tasks between cycles. In the
event-driven programs that Retcon targets, there is no “end-of-
cycle” event that triggers an update, and safe update points are
instead application-dependent and require much more analysis.

In that vein, prior work can be readily distinguished from Retcon
by the mechanisms used to determine when a safe update point has
been reached. Some systems ignore update safety entirely – Contiki
allows application developers to define an initialization function
that can consume the prior version’s state, but no analysis is made
to determine a safe update point. The safety of an update is not
guaranteed and developers must defensively program around cases
where functionality may suddenly disappear from the system.

Most similar to Retcon areWahler et al.’s works on FASA [53–56]
and ELUS [18], supporting individual component-based updates.
However, their safe update point analysis is limited to simple task
quiescence. In the case of FASA, this point is at the end of a cycle,
while ELUS simply waits for all tasks to be idle. However, as dis-
cussed in Section 1, this analysis is not sufficient when performing
live updates for event-driven applications – ongoing asynchronous
operations can persist across an update at an idle point and wreck
havoc in the updated application. This is Retcon’s primary contri-
bution: defining a novel condition for detecting valid live-update
points in event-driven code, asynchronous quiescence, that prior
work has not addressed. Section 4 describes how we determine
system states that satisfy this condition.

3 System Overview
Retcon’s live update operates in two stages, detailed in Figure 1.
The first stage creates an update payload, executing in parallel the
application’s normal build process. Payloads contain the patched
binary and instructions for when and how to apply the update.
The payload is then sent to Retcon’s second stage, an update run-
time executing within the target device’s embedded OS. When the
runtime detects a valid update point, the application is updated,
state is transferred, and execution continues in the new application
version.

Update payload generation. (Section 4) At compile-time, the
updated code passes through a set of static analysis stages, where
update instructions are generated from the program’s behavior:

• Application source code is passed to a static analysis tool,
which generates traces of program execution. We use the
clang Static Analyzer [1], as it can operate directly on ap-
plication source code without modification. When generating
these execution traces, the analyzer generates symbolic con-
straints on application memory, allowing Retcon to identify
specific state values that lead to different events.

• We combine the individual generated execution paths into a
control flow graph (CFG) of the application (Section 4.2), where
edges between basic blocks of application code are defined by
the constraints on application state. For example, if a handler
checks for a null input value, the CFG edge to the rest of the
handler will require the input to be non-zero.

IPSN ’24, May 13–16, 2024, Hong Kong, China Watson et al.

Figure 1: At compile time, Retcon’s static program analysis generates predicates for safe update points and state transfer
instructions, parallel to a normal build process. The update runtime on the target device, upon receiving the update payload,
begins evaluating each predicate over system state. When the device reaches a safe update point that satisfies a predicate,
relevant state is transferred and execution passes to the updated application.

• A set of update predicates, which the runtime uses to verify
that the device has reached a safe update point, is generated by
comparing the CFGs of the original and updated application
versions (Section 4.4).

• Finally, a set of state transfer instructions is paired with each
predicate, detailing how application state is transferred be-
tween versions. These instructions are generated automati-
cally, but in the case of new unknown state, developer input
is needed at compile time to define their values (Section 4.3).

Embedded update runtime. (Section 5) Once the update pay-
load is received by the target device, Retcon’s runtime loads the
new application binary into an isolated memory segment in the
background while the current application continues executing in
the foreground. The runtime begins searching for a suitable update
point, evaluating each of the provided predicates against system
state. Once a predicate matches, the system can safely update. The
runtime executes the state transfer instructions associated with the
successful predicate, and hands control to the new version. Finally,
the runtime signals the deployment infrastructure that the update
is complete and idles until the next patch is received.

3.1 Supported Applications
Retcon supports a broad set of event-driven embedded C appli-
cations. In particular, we target applications that consist of a set
of event handlers that run to completion and yield back to the
kernel upon completion – updates can modify existing handlers,
add their own, and even remove existing ones, and do the same
with any state. Retcon supports applications that statically allocate
their global application state (e.g. a timer, flag, or other data). These
properties are common in many embedded programs: the vast ma-
jority are written in C, avoid dynamic memory allocation for fear
of unpredictable memory shortages and device instability, and rely
on external and software interrupts to manage control flow instead
of long-running processes. Together, they allow Retcon to perform
static analysis at compile-time rather than expensive on-device
analysis at runtime to identify valid live update points.

Testing Retcon Updates. It is important to note that Retcon’s
static analysis cannot reason about program semantics. For example,
the halting problem prevents us from determining whether an
application will actually reach a valid update point or remain stuck

Figure 2: Pacemaker VRP component update. Adds a flag and
additional timer (lines 1-2), and modifies the ventricle_beat
event handler (lines 9-11) to ignore spurious ventricle sensor
readings when they occur in sequence too quickly to indicate
a real arrhythmia. At the end of the VRP period, vrp_timer
expires and resets the flag (lines 4-6).

in an infinite loop [20]. Similarly, an application developer might
modify the meaning of some program state without changing its
name, which cannot be automatically detected. However, these
issues are readily apparent as incorrect application behavior if an
update is tested. Given that an update payload does not change
between individual devices applying the same update, Retcon allows
application developers to test the behavior of their update before
widely deploying it to the bulk of targeted devices, and adjust
the payload to ensure, for example, an update point is reached in
practice.

Running Example: Updating a Pacemaker Controller. In
the following sections, we describe Retcon’s static analysis ap-
proach and runtime behavior. To practically demonstrate the pro-
cess, we consider a small update to a pacemaker controller as an
example. The update code is shown in Figure 2; in a few lines of
code, we implement a Ventricular Refractory Period (VRP) [25],

Retcon: Live Updates for Embedded Event-Driven Applications IPSN ’24, May 13–16, 2024, Hong Kong, China

which addresses noisy sensor readings that might erroneously re-
port a heart beating much faster than desired, triggering undesired
pacing stimulus. The update itself adds a flag indicating that addi-
tional beats should be temporarily ignored, a timer to toggle the
flag after a valid amount of time has passed, and code to manage
this interplay. We analyse this update throughout the rest of the
paper and evaluate in Section 6.

Updating in the midst of changing event handlers highlights
the importance of verifying asynchronous quiescence as an up-
date condition as introduced in Section 1. If Retcon were to blindly
update when a ventricular beat was detected, the new version of
ventricle_beat might see timer expirations from timers set by
the original application set. Luckily, in this case, the new handler
function resets the timers, completely removing this danger. In Sec-
tion 4, we show how Retcon performs this analysis automatically,
and for many more handlers and asynchronous events.

4 Static Analysis
Retcon’s static analysis serves two main purposes. First, it must
identify specific application states that correspond with safe update
points (states that are asynchronously quiescent) and ensure that
the update will correctly move execution to a valid state in the new
version. Second, Retcon generates state transfer instructions for
the updated application to ensure that precious information is not
lost during the update. As we expect the application build process
to execute on a host with substantially greater processing capabil-
ity, memory space, and execution time available than the target
platform, Retcon performs the entirety of the necessary analysis
statically, at compile time, simplifying the runtime component.

Section 4.1 describes how we model application state, including
hardware configuration and active operations. Section 4.2 details
howwe extract an application’s control-flow graph (CFG), where ev-
ery node represents a different application state. Section 4.3 shows
how Retcon generates state transfer instructions for use by its up-
date runtime. Finally, we compare the original and updated CFGs
to yield simple predicates identifying the valid update points.

4.1 Modeling Application State
In Retcon, we focus on modeling application state that persists
across tasks or event handler invocations. At every potential update
point, an application’s state consists of three things:

• A name-value map of all static application memory state.
• The current state of the device’s hardware configuration.
• A set of active asynchronous operations (e.g. timers or I/O).

In addition, each program has a list of event handler entry points
(e.g. ventricle_beat in our running example), which are executed
by the program in response to external interrupts or as callbacks
for asynchronous operations completed by the kernel.

Retcon tracks the application’s memory and hardware state to
inform the state transfer process, because they influence the spe-
cific transfer instructions used in an update. Values in application
memory with matching labels, such as the state of timer t1 in the
VRP update, or any shared hardware configuration, like an inter-
rupt configuration, must also be seen by the updated application. In
the case of differing hardware requirements, such as an additional

sensor, Retcon must track the current hardware status in order to
correctly reconfigure the device.

Tracking asynchronous quiescence. To ensure a safe update,
we must also track the presence of active asynchronous operations,
such as un-expired application timers. They are particularly im-
portant because applying a live update while they are outstanding
could yield incorrect behavior after the update. A simple strategy
– waiting for system states where the list of active asynchronous
operations is empty – is an appealing approach because it’s unlikely
that an application would prefer to be updated while, for example,
performing a radio transmission or waiting for a DMAwrite to com-
plete. However, the practical structure of event-driven application
creates a central problem. Commonly, asynchronous operations are
stopped, reset, or started in an event handler triggered by an event
from another asynchronous operation. This behavior is widespread
in a complete pacemaker controller (Section 6), which manages up
to five concurrently-active timers to detect different arrhythmias.

In this scenario, there is no point at which we can check for a
completely quiescent system. Checking just before an event handler
is executed would fail because active operations may be removed
or reset only when the handler executes, such as timer t1 when
ventricle_beat is triggered. The system is not quiescent during
the event handler’s execution even if those operations are removed,
and after the event handler completes, new or restarted opera-
tions will thwart an update even though carefully inspecting the
application’s semantics would reveal a safe update point.

While there might be a couple of states for a program where the
set of active operations is truly empty, we leverage static program
analysis to generate a broader set of update points that includes
handlers where, upon receiving an event, its execution guarantees
that every pending asynchronous operation will be stopped or restarted.
Intuitively, this marks a “reset” point in the application where
Retcon knows that any nominally active operations will not survive
and the system is actually asynchronously quiescent. Considering
our example, we can determine that a ventricle_beat event will
likely put the system into a valid state for the VRP update because
both implementations fully reset timer t1, ensuring that a prior
timer started by the original version will not survive the update.

Given the relatively limited scope of embedded event-driven pro-
grams (compared to general cloud server applications), we can gain
enough information to identify these safe update points without
requiring exacting manual code annotations from the application
developer. However, identifying the right handler invocations at
which to trigger an update requires understanding how each indi-
vidual handler modifies the program’s set of active asynchronous
operations. We describe extracting this behavior as a CFG below.

4.2 Generating Application CFGs

Retcon represents application logic as a set of directed, acyclic
control-flow graphs, with one graph rooted at every application
event handler. Graph nodes indicates operations – read or write
to application memory, or a relevant system call – that modifies
the tracked application state described in Section 4.1. CFG edges
indicates program flow to the next operation node to be executed,
along with any matching constraints on application state. A specific
execution trace of an event handler is represented by a path through

IPSN ’24, May 13–16, 2024, Hong Kong, China Watson et al.

Figure 3: clang-derived symbolic execution node, capturing
an important timer API system call to start one of the pace-
maker timers. Retcon uses the node to identify the top-level
event handler, link the call to previous memory stores and
loads or system calls, and extracts range-based constraints
on application state.

its CFG until reaching a node where no outgoing edge constraints
are satisfied by the current state.

We extract these CFGs by first performing a pass on the appli-
cation source code using the clang StaticAnalyzer code analysis
tool [1], which generates a tree of branching symbolic execution
traces through the application, starting at each top-level entry point.
We implemented a custom “checker” that evaluates every path and
yields a sequence of relevant operations, including reads, writes,
and calls to kernel APIs that modify platform hardware or affect
asynchronous operations. In addition, symbolic path constraints
are generated by the analyzer on branching logic, from which we
extract range-based constraints on application memory.

As an example, the snippet in Figure 3 shows the raw program
state associated with the VRP update t1 timer reset, and the associ-
ated constraints that must be satisfied to reach it.

Using the CFG, given a triggered event handler and the appli-
cation’s memory, hardware, and active asynchronous operation
state, we can identify the sequence of operations to be executed
under those constraints, and how they will modify asynchronous
requests. Retcon determines whether they are reset or completely
removed, which indicates that the device will achieve asynchronous
quiescence during which an update can be performed.

While this type of path-based analysis scales exponentially with
the complexity of the application, presenting an issue for live up-
dates on more general applications [17], for small embedded ap-
plications with limited branching during execution, this effect is
relatively minimal. In addition, the analysis for an update only
needs to be completed once at compile time on a powerful proces-
sor, before the result is deployed to individual devices.

4.3 Transfer Instruction Generation
To ensure that the application keeps working as designed after a
live update, Retcon must determine how to migrate application
state to the updated version. It generates a sequence of transfer
instructions necessary to synchronize the application memory and

Figure 4: Simple developer-specified state transfer for new
state, written in Python and executed offline when preparing
the update payload. In our example, the new vrp_flag cannot
be automatically transferred, so it is initialized to 0 regardless
of the specific predicate or constraints on pre-existing state.
Retcon warns developers when they are missing a needed
transfer implementation for new global state.

device hardware for the new version, which are executed by the
embedded runtime described below in Section 5.

Application memory. Names present in the application mem-
ory of both the original and updated applications, such as timer
t1, correspond to state that must be transferred during the update
process. These are encoded as (source address, destination address,
size) triples for the runtime to copy. As a result, the device runtime
does not need to interpret any of the static analysis outputs, simply
executing the transfer blindly, as all analysis has already taken place
at compile time. Memory maintained by the original application
but not the update is entirely ignored.

New state. Retcon handles new application state with no ex-
isting counterpart in the original version using a small amount of
external input from the application developer. For example, Ret-
con does not know what the value of the newly-added vrp_flag
in the VRP update (Figure 2) should be, because it cannot under-
stand the updated version’s semantics. Rather than implementing
an imperfect technique to yield the correct initialization values,
Retcon asks the developer at compile-time to specify custom logic
that yields the correct initialization value for a specific name as a
function of the predicate for that specific update point. Figure 4
shows how we could specify a simple default value of 0 for the new
vrp_flag state in Python. The runtime will automatically initialize
(but not start) the added vrp_timerwithout developer intervention
by interacting with the operating system.

Hardware initialization. Retcon also generates transfer in-
structions to perform the update’s expected hardware initialization.
We assume for simplicity that this initialization is performed when
the application starts up. Since the update CFG already contains all
the relevant system calls known to initialize hardware resources
(like timers and GPIO pins), Retcon determines the correct hard-
ware configuration for the update by walking through the CFG for
the application entry point. Given the current hardware state, a
sequence of (system call pointer, arg1, arg2, ...) tuples is generated
based on knowledge of the specific platform hardware subsystem
APIs. For example, the analysis process for the VRP update auto-
matically generates instructions to initialize the new versions of
the application timers and external inputs (Figure 5). If the original
and updated applications share the same set of hardware, non-
configuration hardware registers are not modified by default, and
are automatically accessed by the updated application version. If

Retcon: Live Updates for Embedded Event-Driven Applications IPSN ’24, May 13–16, 2024, Hong Kong, China

Figure 5: Generated hardware initialization instructions
for the VRP update. The ventricle beats are measured
through GPIO pin 10 and a rising-edge interrupt triggers
ventricle_beat execution. The relevant timers are initial-
ized so that future expirations will route to the update.

Figure 6: A predicate to determine when the pacemaker is in
a valid state for the VRP update (edited for clarity). To trigger
an update with this predicate, the system must be about to
invoke the ventricle_beat handler, state s1 must be equal
to 1, and timer t1must not be running.

desired, Retcon allows application developers to implement a cus-
tom transfer routine that modifies the updated hardware state as a
function of the current predicate, which is executed by the runtime
during the update.

4.4 Generating Update Predicates
Given the CFGs of the original and updated application versions
and a method for generating state transfer instructions, Retcon
translates safe update states it has detected into simple “should
the device update here?” predicates that succeed if the application
has reached a valid update point. Each predicate is evaluated just
before execution is routed to an application event handler, so they
first check that the expected handler is going to be executed. Since
different application states may result in an event handler executing
differently, each handler execution path through the CFG generates
a different predicate. The accumulated constraints on the path
edges are collected and included as part of the resulting predicates
to verify the desired memory and hardware state.

The predicate must also check for asynchronous quiescence:
that the currently active asynchronous operations will stopped or
restarted as a result of executing the event handler. Each operation,
identified in an API-dependent manner (e.g. an active timer address),
is placed into a list of allowable pending operations.

The enumeration of CFG paths and predicates is repeated for
the same event handlers in the updated application, given the ap-
propriate transferred state. If an execution path does not show up

in the update (e.g. if the control flow was changed), that potential
update point and associated predicate is abandoned as non-viable.

The constraints on the update’s execution path are combined
with the constraints from the original application path to ensure we
have identified a shared update point in both application versions.
Likewise, the system’s currently active asynchronous operations
should be a subset of those reset by both the original and updated
handler. Intuitively, this tends to identify update points at recurring
locations in the program that are stable between versions, such
as the expiration of long-running timers, and excludes most one-
off operations like radio transmissions, which could vary widely
between versions. For example, the ventricle_beat handler fits
this category, and a matching sample predicate is shown in Figure 6.

If Retcon does not find any valid asynchronous quiescence states
that satisfy these conditions, it outputs an error to application devel-
opers at compile time. The developers then have the opportunity to
modify program code to yield additional quiescent periods, before
resubmitting the modified update to Retcon’s analysis. However, in
practice, we do not expect such cases to arise often, as we target
embedded systems that have natural periodic processing cycles
like sensing interrupts or power management routines that remain
relatively stable between updates, and valid quiescent update points
are likely to be discovered when these periodic events occur.

Finally, Retcon ensures that the updated event handler does
not stop any operation not stopped by the original handler. This
is a practical requirement, in order to support cases where the
embedded operating system underlying Retcon executes additional
application logic conditioned on whether the operation was active
(e.g. attempting to stop a timer that has already been stopped). If
attempting to stop such an operation results in the same behavior
regardless of whether it was active or not, this step can be ignored.

5 Runtime
In comparison to the compile-time analysis pipeline, the update
runtime is by design much more lightweight. Executing as a sub-
system inside the embedded RTOS on-device, the runtime acquires
and loads the updated application binary as the lowest priority
scheduled task. This gives absolute latitude to application function-
ality to continue executing during this process; the update makes
progress when the system overall is idle. Retcon takes advantage
of the fact that, even while facing tight deadlines, embedded de-
vices commonly exhibit periods of no activity (e.g. while waiting
for asynchronous operations). While the device could instead be
stopped for the entire duration of the update load, performing as
much of the update process as possible in the background ensures
application availability, at the cost of a slightly longer end-to-end
update duration after deployment of the updated binary begins.

Safety in the face of errors during the update process is main-
tained by completely isolating the different application binaries
once they are on the board. No modifications are made to the active
application: during the update process, all necessary state is copied
to the update’s memory segment. If the runtime encounters an
error while handling the update, it can stop and the old application
version will continue running.

IPSN ’24, May 13–16, 2024, Hong Kong, China Watson et al.

5.1 Update Payload
The update payload sent to the runtime combines the generated
predicate and state transfer instructions extracted by the static
analysis toolchain in Section 4, and contains:

• The unmodified, updated application binary.
• Additional metadata useful to the update runtime: application
load address, location of application segments, addresses of
update-related flags, etc.

• A list of update predicates identifying valid update points.
• A list of automatically-generated state transfer instructions.
• A list of hardware initialization instructions.

5.2 Predicate Verification
Once the runtime loads the updated application binary, it begins
inspecting the system state to determine when a safe update state
has been reached. Each generated predicate is tied to a specific
application event handler (see Figure 6), so the runtime hooks some
system events in the kernel – interrupts, timer expirations, etc. –
that would return execution to the original application. When an
event occurs, each predicate is verified in turn. If the system meets
the predicate’s application memory, hardware, and asynchronous
operation constraints, the remaining predicates are ignored and
the update process moves to the state transfer phase. If no predi-
cates indicate the current state is safe for an update, the update is
postponed and the original application handler executes.

5.3 State Transfer
When a predicate is satisfied, the matching set of state transfer
instructions are fetched from the update payload (Section 5.1) and
executed. Application memory is copied or initialized in the up-
dated binary, with the same process occurring for the platform
hardware. At this point, the application is suspended until the up-
date completes, as there are limited hardware resources that cannot
be shared by the application versions. Transfer instructions will
not change after being generated during the compilation process,
so pre-deployment testing is possible to mitigate the risk of deploy-
ment errors. Following the update, the pending event is routed to
the updated handler and execution continues.

5.4 Error Handling
Retcon isolates update actions from the currently-running applica-
tion until the update is complete. If an error occurs, control can be
immediately handed back to the original application by routing the
current event to the existing event handler and halting the update
runtime. Update code and data are written into separate Flash and
RAM memory regions without modifying the existing application
binary. If a reboot were to occur during an update, the boot process
would simply restart the unmodified original application. Before
an update is applied, the binary text segment is written into non-
volatile memory to provide persistence after the update completes,
if a reboot were to occur.

6 Evaluation
We evaluate Retcon’s ability to perform embedded live updates
while maintaining application safety. Specifically, we demonstrate

its ability to automatically identify safe update points and ensure
continuity between applications by efficiently performing state
transfer. In this section, we apply Retcon’s toolchain to four appli-
cations: the dual-chamber pacemaker introduced in Section 3.1, an
Artificial Pancreas System (APS) control algorithm, a simple PLC
runtime, and a sense-and-send application integrating a third-party
MQTT library [9]. Table 2 summarizes each application’s memory
and complexity characteristics.

Each application is evaluated on an nRF9160 SiP with a 64 MHz
ARM Cortex-M33 microprocessor, 1 MB of Flash, and 256 kB of
RAM [48]. The update runtime is implemented as a 1,152 SLOC
subsystem for the Zephyr RTOS [2], on which each application
executes. The compiled RTOS, including the Retcon subsystem, re-
quires 86.15 kB of Flash and 32.08 kB RAM at runtime, compared to
81.06 kB and 3.98 kB, respectively, for the OS without live updates
enabled. As a result, Retcon requires 5.09 kB for code and 28.1 kB
of memory to operate. The largest use of this memory (85%) is in
statically allocating a 24 kB buffer for receiving update payloads.
This allocation can be adjusted to reduce memory overhead by lim-
iting maximum payload size, which could be achieved by limiting
the number of predicates contained in each payload.

6.1 Applications

Pacemaker controller. Embedded control logic is a natural target
for a live-update mechanism that can maintain continuity over an
update, and pacemaker controllers in particular may require urgent
updates [14]. We implement the formal dual-chamber pacemaker
control algorithm model verified by Jiang et al. [25], based on func-
tional descriptions of pacemaker operation from Boston Scientific.
Our implementation executes as a collection of asynchronous state
machines controlled by four independent timers. Another microcon-
troller, acting as a synthetic heart, provides two external “sense” in-
puts to mark each part of the beat and receives two “pace” actuation
signals if the controller detects an arrhythmia. While the memory
footprint of the controller is minimal, the constantly-interacting
state machines mean that detecting an appropriate update point is
much more difficult compared to an application with a simple duty
cycle. As previously discussed, we update the pacemaker with a
VRP component to ignore spurious signal inputs.

APS.We implement an artificial pancreas system (APS) based
on the OpenAPS reference design [34], representing a simple em-
bedded sensing application with a significant amount of cached
historical data that is critical to providing accurate care. An APS
is a personal, DIY solution that closes the cycle between a blood
glucose measurement device and an insulin pump. As additional
blood measurements are taken, the controller updates a running
internal estimate of a person’s blood glucose levels, and, periodi-
cally, temporarily increases the patient’s insulin delivery rate to
maintain safe conditions. We update the APS controller with a mod-
ification described in the OpenAPS reference [34] to safely adjust
to unexpected blood glucose deviations.

PLC Runtime. We implement a PLC runtime with a 3-state
ladder-logic state machine. As the PLC application repeats fre-
quently and periodically, updates can occur from one scan cycle to
the next. We emulate a PLC runtime on-device to execute ladder
logic programs, a widespread visual PLC programming method,

Retcon: Live Updates for Embedded Event-Driven Applications IPSN ’24, May 13–16, 2024, Hong Kong, China

Table 2: The size and complexity of each evaluated application. At static analysis, we measure the size of the resulting CFG and
analysis duration. The resulting update payload is transmitted to the Retcon runtime on-device. † Due to evaluation platform
memory constraints, in updates with a high predicate count, we empirically limit the number of predicates sent to the runtime
to 50. This maintains system safety but may result in a longer end-to-end updates as some valid predicates are not evaluated.

App SLOC RAM Used Event Handlers CFG Size Analysis Time Update Payload Predicates Update Time
(bytes) (nodes) (s) (kB) (𝜇s)

Pacemaker 209 240 7 169 54 3.03 12 353.97 ± 3.96
APS 268 2644 2 5798 742 4.50 26 396.98 ± 3.98
PLC 319 88 4 9982 1666 12.45† 136† 244.36 ± 1.53
MQTT Client 1334 4332 12 14324 2271 8.95 41 638.28 ± 1.03

with LDmicro [57], an open source compiler that automatically
generates C code from arbitrary ladder logic programs. While its
memory footprint is the lowest of the evaluated applications, the
bulky machine-generated code yields a large control flow graph
of almost ten thousand nodes, slowing analysis and generating a
large number of predicates (Table 2. Our update includes generated
ladder logic adding two additional application-level states to the
execution schedule, controlling a separate output.

Networked sensor. Finally, we evaluate a sense-and-sendMQTT
client built using the MQTT-C library [9] to perform lightweight
communication with a remote server. For simplicity, we proxy pub-
lished MQTT packets from the device over a serial link before they
are relayed to a remote MQTT server, and the embedded client
periodically queries for the resulting responses. Importantly, the
MQTT client demonstrates Retcon’s ability to support embedded
software libraries that were not developed to explicitly support a
live update capability; we use Retcon to update the system on-the-
fly to publish on different topics. Table 2 shows that while there are
disadvantages to updating a complex application like the MQTT
client – it generates the largest control flow graph and requires
almost forty minutes of offline analysis – the update overhead at
runtime remains negligible.

6.2 Pacemaker Update Process

The pacemaker trace in Figure 7 explores Retcon’s update process
in detail. The goal of the updated controller is to implement a
VRP function against spurious signals sensed from the heart. In
our test setup, the simulated “heart” has a functional ventricle
but requires the atrium to be continually paced by the controller.
Periodically, the original controller is given two ventricle inputs
in quick succession, which results in incorrectly delaying the next
atrial pace by 50 ms. To fix the issue, we generate a small patch that
adds a VRP state machine [25] to ignore these repeated signals and
yields the expected 950 ms interval between each pace.

The update process starts at approximately 𝑡 = 21s by transfer-
ring the appropriate update payload to the device, but remains in
the background, processing only when the system is idle and in
small chunks before serving application interrupts to avoid inter-
fering with application functionality. Remaining in the background,
the update payload is fully received at approximately 𝑡 = 28 and
Retcon’s runtime begins checking system state against the pay-
load’s predicates whenever control is about to be handed to the

application. While the next two incoming ventricle events immedi-
ately following do not satisfy any of the predicates, the following
timer expiration triggers an atrial pace that satisfies a predicate.
Retcon, detecting that the system is in a safe update state, begins
the quick blocking update phase.

As discussed in Section 5, the entire platform now performs
state transfer and initialization before routing control flow to the
updated controller’s atrial pace handler with minimal delay. The
newly-added VRP component now begins to ignore duplicate sensor
inputs, resulting in the expected pacing behavior. We evaluate the
performance of this process in Figure 8 and Figure 10.

6.3 Update Runtime Performance

Baselines. Our baseline comparisons for timely updates are the
industry-standard flash-and-reboot approach to upgrading system
firmware, and an application-swapping approach that uses Retcon
to deliver a smaller application-only binary, but still requires a
system reset. For the flash-and-reboot method, the resulting update
time consists primarily of the cost to erase the device’s persistent
flash memory and copy the entire operating system, packaged with
the application, while the application swap only measures system
reinitialization. This process, assuming a maximum application
payload size, requires approximately 4 seconds on our platform
to flash a new binary, while an application swap requires 1.93 ms.
For comparison, each application update we apply using Retcon
successfully performs the update live in less than a millisecond.

Update latency. Figure 8 shows the distribution of update laten-
cies (the amount of time the application is blocked from executing
in order to finalize the update) for each application. For the PLC,
which has very little state to transfer and no new kernel state to ini-
tialize (e.g. a new timer), the interruption is minimal at an average
of 244 𝜇s. However, updates that require additional initialization
(the pacemaker controller) or must transfer large buffers (the APS
and MQTT client) yield a two- or three-times greater latency.

However, the interrupt latency caused by a triggered update is
not necessarily the worst-case scenario for an application using
Retcon. While the analysis model in Section 4 allows us to identify
safe program points for an update, it cannot guarantee that we
will ever reach those points during a normal run of the program,
potentially never completing an update. In Figure 9 we evaluate
the performance impact of an application that evaluates each of its
predicates without detecting a safe update point.

IPSN ’24, May 13–16, 2024, Hong Kong, China Watson et al.

Figure 7: Overview of the pacemaker update that implements a VRP, accounting for spurious duplicate signal readings from
the heart’s ventricle (Section 6.2). Prior to the update, the controller is periodically incorrectly delaying a required pace to the
heart’s atrium because additional impulses (highlighted in red) are detected from the ventricle. After the update, the controller
begins to pace optimally without missing a beat.

Figure 8: Interrupt latency when the Retcon runtime detects
a safe update state and performs an update before returning
execution to the new program version. For each application,
the variance of update latency is minimally variable and in
even the slowest case requires only approximately 650 𝜇s.

Applications with few predicates incur small evaluation over-
heads, while the opposite is true for those with many predicates.
The PLC, even with a limited set of predicates (see Table 2), requires
almost 900 𝜇s to evaluate each of its predicates in the worst case,
far larger than its one-time update interruption latency of about
250 𝜇s. The pacemaker can check each of its 12 predicates in less
than 40 𝜇s, but exhibits higher update latency when a safe state is
found due to increased state initialization.

Application-specific factors. The breakdown of contributing
factors to update latency, shown in Figure 10, clearly splits the
evaluated applications into two groups. The time required to update
the APS and MQTT client implementations is dominated by the
cost of state transfer, as both must copy over 2 kB in data buffers
of historical measurements (in the case of the APS) or sending and
receiving message queues (in the case of the MQTT client). On the
other hand, the PLC and Pacemaker implementations require much
less state transfer, so latency is primarily dominated by new state

Figure 9: Interrupt latencywhen the Retcon runtime does not
detect a suitable safe system state to trigger an update and as
a result, evaluates every predicate provided by the update. In
general, cost is dominated by the number of predicates that
must be checked.

initialization. In the end, the total delay in performing an update
is determined by application-specific factors, while the overhead
of the runtime, as well as the cost of evaluating predicates until a
valid update point is detected, remains small in every case.

7 Discussion
We briefly analyze some broader implications, limitations, and po-
tential future directions suggested by our experience designing
and evaluating Retcon. While Retcon targets a large number of
event-driven embedded applications, it does not consider some
more complex use cases, such as multi-threaded or multi-core ap-
plications – expanding Retcon to coordinate distributed updates
between multiple microprocessors on a device (such as a security
or signal processing chip) is an interesting avenue for future work.
Similarly, applications that currently use dynamic memory alloca-
tion cannot be updated by Retcon. However, since applications may
have asynchronous quiescent update points that are not dependent

Retcon: Live Updates for Embedded Event-Driven Applications IPSN ’24, May 13–16, 2024, Hong Kong, China

Figure 10: Breakdown of individual Retcon runtime compo-
nent contributions to the total update latencies in Figure 8.
We verify that the system state satisfies a given predicate,
then transfer program state to the new application and ini-
tialize new state. Inducing the RTOS to pass control to the
update incurs some overhead.

on heap state, we envision an extension to Retcon that tracks the
actions of a simple memory allocator in our runtime subsystem to
perform dynamic state transfer.

The scalability of Retcon’s static analysis is dictated by the effi-
ciency of the underlying symbolic execution. In Section 6, we suc-
cessfully analyze a PLC runtime consisting largely of automatically-
generated C code, but the process requires almost an hour of analy-
sis. This is a byproduct of the branching execution tree-style analy-
sis that the clang static analysis engine uses, which is primarily
used to generate compiler warnings for developers. Retcon has to
track any store/load global state modifications, as well as any rele-
vant system calls, and update constraints on program branching,
yielding an exponentially-expanding search space. The number
of predicates could also scale similarly. Of the 12 predicates we
generate for the pacemaker controller in Section 6, 6 are manually
verified as impossible to observe during normal operation due to
incompatibilities between state constraints and expected running
timers. However, since the analysis process is performed only once
offline, and the results are broadcast to target devices, a longer
analysis time is acceptable in exchange for no overhead applied
directly at the destination. Finally, unlike other C symbolic execu-
tion tools like Otter [45] or CREST [10], clang can operate directly
on C source code that we cross-compile for an embedded ARM
processor without modification.

Retcon uses state naming as a proxy for that state’s semantics,
but this is not always the case. As a result, updates may crash or
behavior erroneously if our analysis transfers state incorrectly. As
discussed in Section 3.1, Retcon’s role is as part of a validation,
verification, and deployment pipeline, not as a total replacement.
Many errors, such as choosing predicates that rarely succeed in
practice, if at all, are readily noticeable when tested. Through em-
pirical observation of test updates, issues that might take down a
fleet of sensors can be easily avoided, and full deployment can even
be accelerated by prioritizing update points that occur frequently.

While fast, Retcon’s updates still exhibit some variability in up-
date timing, as evaluating predicates and performing state transfer
can require varying amounts of computation depending on the
current system state, and a delay is inherently added to interrupt
routines. As a result, these updates may not be directly applicable
to systems with hard real-time constraints. A hard real-time exten-
sion to Retcon could see application developers pick a small subset
of well-known predicates that always execute and introduce (safe
and feasible) constant-time delays to interrupt deliveries to mask
update interruptions.

Finally, although we require some manual developer interven-
tion for new state values or special hardware state transfer Retcon
offers a significant improvement in reducing developer workload by
automatically transferring common between application versions,
relieving what would otherwise be an exhaustive manual effort to
line up source and destination addresses across update versions.
As a result of embedded application constraints, we can fully auto-
mate the process of determining when a safe update point occurs
(at compile- and run-time) that is consistent between application
versions. In simple applications like the APS (6), Retcon correctly
finds the same natural update point that an embedded developer
would manually select, while in applications like the pacemaker,
where correct behavior is determined by multiple independent state
machines operating all at once, Retcon can easily identify update
points that would require deep application expertise and careful
evaluation to confirm as a safe update point.

8 Conclusion
In this paper, we presented Retcon, which performs live updates on
event-driven applications executing on constrained embedded de-
vices. Retcon updates applications safely when they satisfy a novel
asynchronous quiescence condition that we define for the event-
driven setting, uses a static analysis toolchain to identify those
points, and correctly transfers state between application versions.
A simple embedded runtime ensures updates are safe and timely:
our evaluation demonstrates that Retcon can update a variety of
applications in a manner of microseconds.

9 Acknowledgements
We thank the anonymous reviewers and shepherd for their helpful
feedback, Cristiano Giuffrida and Lucy Cherkasova whose insight-
ful comments helped shape this work, and Will Huang and the
rest of Lab11 for their helpful comments. This material is based
upon work supported by the U.S. Department of Energy’s Office of
Energy Efficiency and Renewable Energy (EERE) under the award
number DE-EE0008220, an Okawa Foundation Research Grant, and
the CONIX Research Center, one of six centers in JUMP, a Semicon-
ductor Research Corporation (SRC) program sponsored by DARPA.

References
[1] [n. d.]. Clang Static Analyzer. https://clang-analyzer.llvm.org/.
[2] [n. d.]. Zephyr RTOS. https://www.zephyrproject.org/.
[3] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. 2005. OPUS:

Online Patches and Updates for Security.. In USENIX Security Symposium.
[4] Jeff Arnold and M Frans Kaashoek. 2009. Ksplice: Automatic rebootless kernel

updates. In Proceedings of the 4th ACM European conference on Computer systems.
[5] Rockwell Automation. 2019. ControlFLASH User Manual. . Accessed: 2020-05-21.

https://clang-analyzer.llvm.org/
https://www.zephyrproject.org/
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um105_-en-e.pdf

IPSN ’24, May 13–16, 2024, Hong Kong, China Watson et al.

[6] Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann, Martine S
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C Schmidt, and Matthias
Wählisch. 2018. RIOT: An open source operating system for low-end embedded
devices in the IoT. IEEE Internet of Things Journal 5, 6 (2018), 4428–4440.

[7] R. Barry. 2009. FreeRTOS referencemanual: API functions and configuration options.
[8] Francesco Basile, Pasquale Chiacchio, and Diego Gerbasio. 2012. On the imple-

mentation of industrial automation systems based on PLC. IEEE Transactions on
Automation Science and Engineering 10, 4 (2012), 990–1003.

[9] Liam Bindle and Demilade Adeoye. 2021. LiamBindle/MQTT-C: A portableMQTT
C client for embedded systems and PCs alike. https://github.com/LiamBindle/
MQTT-C.

[10] Jacob Burnim and Koushik Sen. 2008. Heuristics for scalable dynamic test gener-
ation. In 2008 23rd IEEE/ACM Intl. Conf. on Automated Software Engineering.

[11] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. 2007. Polus:
A powerful live updating system. In 29th Intl. Conf. on Software Eng.

[12] Yang Chen, Omprakash Gnawali, Maria Kazandjieva, Philip Levis, and John
Regehr. 2009. Surviving sensor network software faults. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles.

[13] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki-a lightweight
and flexible operating system for tiny networked sensors. In 29th annual IEEE
international conference on local computer networks. IEEE.

[14] FDA. 2017. Firmware Update to Address Cybersecurity Vulnerabilities Identified
in Abbott’s (formerly St. Jude Medical’s) Implantable Cardiac Pacemakers: FDA
Safety Communications. . Accessed: 2020-05-25.

[15] Sebastian Fischmeister and Klemens Winkler. 2005. Non-blocking deterministic
replacement of functionality, timing, and data-flow for hard real-time systems at
runtime. In 17th Euromicro Conference on Real-Time Systems (ECRTS’05).

[16] Recorded Future. 2022. Continued Targeting of Indian Power Grid Assets by
Chinese State-Sponsored Activity Group. https://go.recordedfuture.com/hubfs/
reports/ta-2022-0406.pdf.

[17] Cristiano Giuffrida, Anton Kuijsten, and Andrew S Tanenbaum. 2013. Safe and
automatic live update for operating systems. ACM Sigplan Notices 48, 4 (2013),
279–292.

[18] Giovani Gracioli and Antônio Augusto Fröhlich. 2010. ELUS: A dynamic software
reconfiguration infrastructure for embedded systems. In 2010 17th International
Conference on Telecommunications.

[19] Tianxiao Gu, Chun Cao, Chang Xu, Xiaoxing Ma, Linghao Zhang, and Jian Lu.
2012. Javelus: A low disruptive approach to dynamic software updates. In 2012
19th Asia-Pacific Software Engineering Conference.

[20] Deepak Gupta, Pankaj Jalote, and Gautam Barua. 1996. A formal framework for
on-line software version change. IEEE Trans. on Software engineering 22, 2 (1996),
120–131.

[21] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava.
2005. A dynamic operating system for sensor nodes. In Proceedings of the 3rd
international conference on Mobile systems, applications, and services.

[22] Christopher M Hayden, Edward K Smith, Michail Denchev, Michael Hicks, and
Jeffrey S Foster. 2012. Kitsune: Efficient, general-purpose dynamic software
updating for C. In Proceedings of the ACM international conference on Object
oriented programming systems languages and applications.

[23] Petr Hosek and Cristian Cadar. 2013. Safe software updates via multi-version
execution. In 2013 35th International Conference on Software Engineering (ICSE).

[24] Jonathan W Hui and David Culler. 2004. The dynamic behavior of a data dis-
semination protocol for network programming at scale. In Proceedings of the 2nd
international conference on Embedded networked sensor systems.

[25] Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mangharam.
2012. Modeling and verification of a dual chamber implantable pacemaker. In
Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems.

[26] JUUL Labs OSS. [n. d.]. MCUboot. https://juullabs-oss.github.io/mcuboot/.
[27] Sungjoo Kang, Ingeol Chun, and Wontae Kim. 2014. Dynamic software updat-

ing for cyber-physical systems. In The 18th IEEE International Symposium on
Consumer Electronics (ISCE 2014).

[28] Sanidhya Kashyap, Changwoo Min, Byoungyoung Lee, Taesoo Kim, and Pavel
Emelyanov. 2016. Instant {OS} Updates via Userspace Checkpoint-and-Restart.
In 2016 {USENIX} Annual Technical Conference ({USENIX}{ATC} 16).

[29] Justin Z Lee, Mark J Henrich, Paul Bibby, Siva K Mulpuru, Paul A Friedman,
Yong-Mei Cha, and Komandoor Srivathsan. 2019. Pacemaker firmware update
and interrogation malfunction. HeartRhythm case reports 5, 4 (2019), 213.

[30] Philip Levis and David Culler. 2002. Maté: A tiny virtual machine for sensor
networks. ACM Sigplan Notices 37, 10 (2002), 85–95.

[31] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,
Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. 2005. TinyOS:
An operating system for sensor networks. In Ambient intelligence. 115–148.

[32] Philip Levis, Neil Patel, David Culler, and Scott Shenker. 2004. Trickle: A self-
regulating algorithm for code propagation and maintenance in wireless sensor
networks. In Proc. of the 1st USENIX/ACM Symp. on Networked Systems Design
and Implementation.

[33] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto, Pra-
bal Dutta, and Philip Levis. 2017. Multiprogramming a 64kb computer safely and

efficiently. In Proceedings of the 26th Symposium on Operating Systems Principles.
[34] Dana Lewis. 2019. OpenAPS 0ref Reference Design. https://github.com/openaps/

oref0.
[35] Lucy Ellen Lwakatare, Teemu Karvonen, Tanja Sauvola, Pasi Kuvaja, He-

lena Holmström Olsson, Jan Bosch, and Markku Oivo. 2016. Towards DevOps in
the embedded systems domain: Why is it so hard?. In 2016 49th hawaii interna-
tional conference on system sciences (hicss).

[36] Kristis Makris and Rida A Bazzi. 2009. Immediate Multi-Threaded Dynamic
Software Updates Using Stack Reconstruction.. In USENIX ATC.

[37] Kristis Makris and Kyung Dong Ryu. 2007. Dynamic and adaptive updates of
non-quiescent subsystems in commodity operating system kernels. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007.

[38] Jami Montgomery. 2004. A model for updating real-time applications. Real-Time
Systems 27, 2 (2004), 169–189.

[39] Imanol Mugarza, Jorge Parra, and Eduardo Jacob. 2018. Analysis of existing
dynamic software updating techniques for safe and secure industrial control
systems. Intl. journal of safety and security eng. 8, 1 (2018), 121–131.

[40] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. 2006. Practical
dynamic software updating for C. ACM SIGPLAN Notices 41, 6 (2006), 72–83.

[41] Christian Niesler, Sebastian Surminski, and Lucas Davi. 2021. HERA: Hotpatching
of Embedded Real-time Applications. In Proc. of 28th Network and Distributed
System Security Symposium (NDSS 2021).

[42] Agnes C Noubissi, Julien Iguchi-Cartigny, and Jean-Louis Lanet. 2011. Hot
updates for java based smart cards. In IEEE 27th Intl. Conf. on Data Eng.Workshops.

[43] Luís Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. 2019. Mved-
sua: Higher availability dynamic software updates via multi-version execution. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems.

[44] Niels Reijers and Chi-Sheng Shih. 2018. CapeVM: A Safe and Fast Virtual Machine
for Resource-Constrained Internet-of-Things Devices. In Proceedings of the 16th
ACM Conference on Embedded Networked Sensor Systems.

[45] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S Foster, and Adam Porter.
2010. Using symbolic evaluation to understand behavior in configurable software
systems. In 2010 ACM/IEEE 32nd International Conference on Software Engineering.

[46] Habib Seifzadeh, Hassan Abolhassani, and Mohsen Sadighi Moshkenani. 2013. A
survey of dynamic software updating. Journal of Software: Evolution and Process
25, 5 (2013), 535–568.

[47] Habib Seifzadeh, Ali Asghar Pourhaji Kazem, Mehdi Kargahi, and Ali Movaghar.
2009. A method for dynamic software updating in real-time systems. In 2009
Eighth IEEE/ACIS International Conference on Computer and Information Science.

[48] Nordic Semiconductor. [n. d.]. nRF9160 cellular IoT System-in-
Package. https://www.nordicsemi.com/-/media/Software-and-other-
downloads/Product-Briefs/nRF9160-SiP-product-brief.pdf.

[49] Rodrigo Steiner, Giovani Gracioli, Rita de Cássia Cazu Soldi, and Antônio Augusto
Fröhlich. 2012. An operating system runtime reprogramming infrastructure for
WSN. In 2012 IEEE Symposium on Computers and Communications (ISCC).

[50] SUSE. [n. d.]. SUSE Linux Enterprise Live Patching. https://www.suse.com/
products/live-patching/.

[51] Trusted Firmware. [n. d.]. ARM Trusted Firmware-M. https://www.
trustedfirmware.org/.

[52] Kaleem Ullah, Munam Ali Shah, and Sijing Zhang. 2016. Effective ways to
use Internet of Things in the field of medical and smart health care. In 2016
international conference on intelligent systems engineering (ICISE).

[53] Michael Wahler and Manuel Oriol. 2014. Disruption-free software updates in
automation systems. In Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA).

[54] Michael Wahler, Manuel Oriol, and Aurelien Monot. 2015. Real-time multi-core
components for cyber-physical systems. In 2015 18th International ACM SIGSOFT
Symposium on Component-Based Software Engineering (CBSE).

[55] Michael Wahler, Stefan Richter, Sumit Kumar, and Manuel Oriol. 2011. Non-
disruptive large-scale component updates for real-time controllers. In 2011 IEEE
27th International Conference on Data Engineering Workshops.

[56] Michael Wahler, Stefan Richter, and Manuel Oriol. 2009. Dynamic software
updates for real-time systems. In Proceedings of the 2nd International Workshop
on Hot Topics in Software Upgrades.

[57] Jonathan Westhues. 2016. LDmciro: Ladder Logic for PIC and AVR. https:
//cq.cx/ladder.pl.

[58] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave Jing Tian, Antonio Bianchi,
Mathias Payer, and Dongyan Xu. 2020. {BLESA}: Spoofing Attacks against
Reconnections in Bluetooth Low Energy. In 14th {USENIX}Workshop on Offensive
Technologies.

[59] Hansong Xu, Wei Yu, David Griffith, and Nada Golmie. 2018. A survey on
industrial Internet of Things: A cyber-physical systems perspective. IEEE Access
6 (2018), 78238–78259.

https://github.com/LiamBindle/MQTT-C
https://github.com/LiamBindle/MQTT-C
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://go.recordedfuture.com/hubfs/reports/ta-2022-0406.pdf
https://go.recordedfuture.com/hubfs/reports/ta-2022-0406.pdf
https://juullabs-oss.github.io/mcuboot/
https://github.com/openaps/oref0
https://github.com/openaps/oref0
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF9160-SiP-product-brief.pdf
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF9160-SiP-product-brief.pdf
https://www.suse.com/products/live-patching/
https://www.suse.com/products/live-patching/
https://www.trustedfirmware.org/
https://www.trustedfirmware.org/
https://cq.cx/ladder.pl
https://cq.cx/ladder.pl

	Abstract
	1 Introduction
	2 Related Work
	2.1 General-purpose live updates
	2.2 Embedded live update systems

	3 System Overview
	3.1 Supported Applications

	4 Static Analysis
	4.1 Modeling Application State
	4.2 Generating Application CFGs
	4.3 Transfer Instruction Generation
	4.4 Generating Update Predicates

	5 Runtime
	5.1 Update Payload
	5.2 Predicate Verification
	5.3 State Transfer
	5.4 Error Handling

	6 Evaluation
	6.1 Applications
	6.2 Pacemaker Update Process
	6.3 Update Runtime Performance

	7 Discussion
	8 Conclusion
	9 Acknowledgements
	References

